
A Position-Aware Approach to Decomposing God Classes
Tianyi Chen∗

Beijing Institute of Technology
Beijing, China

chentianyiyx@gmail.com

Yanjie Jiang∗
Peking University
Beijing, China

yanjiejiang@pku.edu.cn

Fu Fan
Beijing Institute of Technology

Beijing, China
fufan@bit.edu.cn

Bo Liu
Beijing Institute of Technology

Beijing, China
liubo@bit.edu.cn

Hui Liu†
Beijing Institute of Technology

Beijing, China
liuhui08@bit.edu.cn

ABSTRACT
God classes are widely recognized as code smells, significantly
impairing the maintainability and readability of source code. How-
ever, resolving the identified God classes remains a formidable
challenge, and we still lack automated and accurate tools to resolve
God classes automatically. To this end, in this paper, we propose
a novel approach (called ClassSplitter) to decompose God classes.
The key observation behind the proposed approach is that software
entities (i.e., methods and fields) that are physically adjacent often
have strong semantic correlations and thus have a great chance of
being classified into the same class during God class deposition.
We validate this hypothesis by analyzing 54 God class decomposi-
tion refactorings actually conducted in the wild. According to the
observation, we measure the similarity between software entities
by exploiting not only traditional code metrics but also their rel-
ative physical positions. Based on the similarity, we customize a
clustering algorithm to classify the methods within a given God
class, and each of the resulting clusters is taken as a new class.
Finally, ClassSplitter allocates the fields of the God class to the new
classes according to the field-access-based coupling between fields
and classes. We evaluate ClassSplitter using 133 real-world God
classes from open-source applications. Our evaluation results sug-
gest that ClassSplitter could substantially improve the state of the
art in God class decomposition, improving the average MoJoFM by
47%. Manual evaluation also confirmed that in most cases (77%) the
solutions suggested by ClassSplitter were preferred by developers
to alternatives suggested by the state-of-the-art baseline approach.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution.

∗Tianyi Chen and Yanjie Jiang made equal contributions to this work.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3694992

KEYWORDS
God Class, Software Refactoring, Code Smells, Large Language
Model

ACM Reference Format:
Tianyi Chen, Yanjie Jiang, Fu Fan, Bo Liu, and Hui Liu. 2024. A Position-
Aware Approach to Decomposing God Classes. In 39th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’24), October
27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3691620.3694992

1 INTRODUCTION
Software refactoring is a widely-used technique to improve soft-
ware quality, especially its readability and maintainability [34] [36].
The key to software refactoring is to restructure the internal struc-
tures of the software applications, e.g., relocating code elements
like methods, fields, classes, and packages. To identify which part
of the source code deserves refactorings, Beck and Fowler [9] pro-
posed the concept of bad smells. According to the definition, bad
smells are “certain structures in the code that suggest (sometimes
they scream for) the possibility of refactoring” [9]. Consequently, by
identifying bad smells, we may identify refactoring opportunities.

God class is a typical bad smell [9]. God classes often refer to such
huge classes that do too much, taking a lot of responsibilities (like
the almighty God). God classes are harmful because they violate
the single-responsibility principle [33], a well-known principle that
requests each module to take only a single responsibility. God
class, in contrast, takes multiple responsibilities, which may result
in a sequence of negative impacts on the maintainability of the
source code. On the first place, it is difficult to read and understand
the God class because of its complexity. Second, the complexity
of the God class also makes it difficult to be reused. In case you
need only a small part of the class, you would hesitate to reuse
the whole (complex) class because the latter would bring useless
code as well as unnecessary coupling (with external elements) and
unnecessary complexity. Finally, since a God class takes multiple
responsibilities, it could be modified frequently because of various
reasons associated with various responsibilities. The modification
is not only challenging (because of the complexity of the class) but
also makes the God class unstable. Because of all such negative
impacts, developers had better detect and decompose God classes.

However, it is often challenging to decompose a God class cor-
rectly into smaller classes [41]. Various functions fulfilled by dif-
fident methods often intertwine closely, making it difficult to cut

129

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://doi.org/10.1145/3691620.3694992
https://doi.org/10.1145/3691620.3694992
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3694992&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tianyi Chen, Yanjie Jiang, Fu Fan, Bo Liu, and Hui Liu

them off clearly. Besides that, it is difficult, if not impossible, to quan-
titatively measure the quality of different decomposition solutions.
Consequently, it is challenging to select the best solution by com-
paring all potential solutions. To facilitate the task, approaches have
been proposed to decompose God classes automatically or semi-
automatically. For example, Bavota et al. [7] proposed an approach
to decompose God classes according to the similarity between soft-
ware entities. The similarity between the two entities concerns
their common access to other elements (e.g., fields), caller-callee
relationships, and their textual similarity computed by LSI (Latent
Semantic Indexing). Akash et al. [1] improved Bavota’s approach
by replacing LSI with LDA (Linear Discriminant Analysis) in the
computation of the textual similarity between methods. Anquetil et
al. [3] designed a software visualization tool and an accompanying
process that together allow programmers to conveniently design
decomposition solutions to God classes. The approach proposed by
Alzahrani [2] exploits codemetrics only, and it leverages a greedy al-
gorithm to cluster methods according to the code metrics. Although
such approaches are useful and they successfully reduce the cost
of God class decomposition, the performance of such approaches
deserves further improvement (as shown in Section 5). Developers
often have to substantially modify the suggested solutions.

To this end, in this paper, we propose a novel approach (called
ClassSplitter) to decompose God classes. The key observation be-
hind the approach is that the relative positions (i.e., the physi-
cal orders) of fields and methods within a God class are useful in
suggesting decomposition solutions. According to our experience,
physically adjacent methods are often closely related and thus have
a great chance of being allocated to the same class during God class
decomposition. To the best of our knowledge, however, none of the
existing approaches have exploited such positions for God class de-
composition. Besides the positions, we also exploit traditional code
metrics as well as function-based similarity between methods. We
leverage a heavily customized clustering algorithm to decompose
methods within the given God class into small groups according to
function-based similarities, and to adapt (by splitting and merging)
the groups according to the methods’ positions and code metrics.
Finally, we allocate fields to the resulting groups according to the
coupling between fields and methods. We evaluate the proposed ap-
proach using 133 real-world God classes and compare its solutions
against the golden set (i.e., solutions constructed by the original
developers). Our evaluation results suggest that the proposed ap-
proach can substantially improve the state of the art, improving
the average performance (MoJoFM [47]) by 47%. Human evaluation
results also confirm that solutions generated by the proposed ap-
proach were often (in 77% of the cases) better than those suggested
by the state-of-the-art baseline.

This paper makes the following contributions:

• We propose a novel approach to decomposing God classes.
To the best of our knowledge, it is the first one in this line
that exploits the relative positions of methods and fields.
• The paper presents a new dataset containing 187 real-world
God classes and their reference solutions proposed and ap-
plied by the original developers. To the best of our knowl-
edge, this is the first publicly available dataset (available
at [15]) of God classes accompanied by reference solutions.

• We conduct an empirical study that validates the correlation
between the physical positions of methods/fields and their
probability of co-occurrence after God class decomposition.
• The paper presents a prototype implementation and an ini-
tial evaluation of the proposed approach. The replication
package is publicly available on GitHub [15].

2 RELATEDWORK
2.1 Decomposition of God Classes
The approach proposed by De Lucia et al. [19] is the first to de-
compose large (God) classes automatically. They consider both
structural and conceptual criteria and build a weighted graph of the
class methods based on structural and semantic cohesion metrics.
With the metrics, they employ a MaxFlow-MinCut algorithm [17]
to split the graph to produce more cohesive classes.

Fokaefs et al. [22] employed structural information of software
entities and a hierarchical agglomerative clustering algorithm to
suggest extract class refactorings. To do that, they first retrieve
entity sets (i.e., entities coupled with the given entity) [44] for each
entity in the given class, and measure the distance between two
class entities by the Jaccard distance[4] between their entity sets.
The Jaccard distance is then employed by the clustering algorithm.
The algorithm first assigns each entity to a single cluster, and then
in each iteration, it merges two closest clusters until all entities are
contained in a single cluster. The output of the clustering algorithm
is a tree diagram where leaves represent entities to be clustered
and other nodes represent possible clusters composed of entities.
The root of the tree represents the largest cluster containing all of
the entities. Because it is often difficult to find the right level to cut
the dendrogram, the authors tried to mitigate this issue by propos-
ing different refactoring opportunities that can be obtained using
different thresholds. The approach has also been implemented [23].

Bavota et al. [8] presented a novel approach to separate a God
class into two smaller ones. It represents the methods in the to-
be-decomposed class as a weighted graph and then employs the
MaxFlow-MinCut technique [17] to divide it into two subgraphs.
The weight between methods (nodes) is computed as the combina-
tion of the semantic and structural similarity between methods. The
structural similarity is measured by variables accessed by methods
and their inter-invocations. The semantic similarity is measured
by Latent Semantic Indexing(LSI) [20] according to vocabularies
extracted from the methods. To the best of our knowledge, they are
the first to exploit such semantic similarities for class decomposi-
tion. This approach was later improved by Bavota et al. [7]. The
improved version applies a two-step clustering algorithm (instead
of MaxFlow-MinCut) to separate a large graph into multiple sub-
graphs (can be more than 2) and to avoid obtaining classes with a
very low number of methods.

The approach proposed by Akash et al. [1] is similar to that
proposed by Bavota et al. [8]. The difference is that the former
exploits the semantic information in methods with Latent Dirichlet
Allocation(LDA)[12] instead of LSI that was employed by Bavota
et al. [8]. LAD considers the words in each method as a document
and gives a topic distribution for each document. The cosine simi-
larity between the topic distributions of the methods serves as their
semantic similarity.

130

A Position-Aware Approach to Decomposing God Classes ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Jeba et al. [27] extended Bavota’s approach [8] by employing a
novel clustering algorithm that exploits documentation of meth-
ods. It exploits the comment sections appearing exactly before the
method and the comment lines within the method body. Such doc-
uments are then normalized and weighted by the term frequency-
inverse document frequency (TF-IDF). The similarity between two
method documents is calculated as the cosine of the angle between
their corresponding vectors. It then employs the Hierarchical Ag-
glomerative Clustering to cluster the methods. It has high require-
ments for the completeness of comments in code.

Alzahrani [2] proposed a novel approach to decompose classes
according to cohesion and coupling. The approach defines quantita-
tive metrics for measuring cohesion and coupling between classes.
The most novel part of the approach is that it leverages a greedy
clustering algorithm. The algorithm initially takes each method in
the to-be-decomposed class as a candidate class (which contains
only a single method). It then keeps merging class pairs that have
the highest coupling until only two classes are left. The clustering
with the best metrics (considering both cohesion and coupling) is
recommended as the final solution.

Our approach differs from the existing approaches introduced
above in that it exploits the relative positions of software entities
that have not yet been exploited by other approaches in this line.

2.2 Detection of God Classes
Automated detection of God classes has been extensively studied,
and quite a few approaches have been proposed. We refer to the
literature review conducted by Reis et al. [39] for a comprehensive
introduction to such approaches. Here, we only present a brief intro-
duction to the most impressive and the most influential approaches.

One of the most intuitive tactics to detect God classes is to define
a set of heuristics rules and to validate to-be-checked classes against
such rules. We call approaches following such tactic rule-based ap-
proaches. For example, Simon et al. [43] provided a metric-based
software visualization approach that visually presents all elements
within a class. The distance between nodes (code entities) is com-
puted by the coincide of the entities they associate with. If the
elements composed of several highly cohesive groups and different
groups are far away from each other, it is likely that the origi-
nal class is a God class and it should be decomposed into smaller
ones. Marinescu et al. [32] identified God classes with three code
metrics: Weighted Method Count (measuring the complexity of the
class), Tight Class Cohesion (measuring the cohesion of the class)
and Access to Foreign Data(measuring the accesses to foreign data).
They computed the metrics and compared them against predefined
thresholds to decide whether it was a God class or not. Palomba
et al. [37] were the first to detect God classes with source code’s
change histories. A class is identified as a God class if it has been
“modified in more than 𝛼 percent of commits involving at least an-
other class” [37]. Palomba et al. [38] also leveraged textual similarity
between software entities to detect God classes. If the average tex-
tual similarity between any method pairs within the given class is
smaller than a threshold, it is reported as a God class.

With the popularity of machine learning techniques, machine
learning-based approaches to God class detection are emerging [14].

For example, Khomh et al. [28, 29] employed Bayesian belief net-
works (BBN) to God classes whereas Maiga et al. [31] leveraged
Support Vector Machines (SVM). Fontana et al. [6] compared vari-
ous machine learning algorithms in detecting God classes, and their
evaluation results suggest that J48 [10], JRip [16], Naive Bayes, and
Random Forest often resulted in the best performance. Fontana et
al. [24] not only detected God classes but also leveraged machine
learning techniques to predict the severity. Liu et al. [30] applied
deep learning techniques to God class detection. Their key contribu-
tion is that they proposed a refactoring-based approach to generate
training data for smell detection, which makes deep learning-based
smell detection feasible. Sharma et al. [42] further improved deep
learning-based God class detection with transfer learning [46].

3 HYPOTHESIS AND ITS VALIDATION
3.1 Observation and Hypothesis
While collecting real-world God classes and their refactoring solu-
tions conducted by developers, we found that physically adjacent
methods are often closely related in their function, and thus in
most cases, they were allocated to the same classes during God
class decomposition. A typical example is presented in Listing 1.
This example is extracted from the open-source application Ant
Media Server [5]. The class StreamSourceRestService is composed of
25 methods and 8 fields. To improve the readability and maintain-
ability of the source code, the developers of the application decided
to decompose it into two smaller classes: StreamSourceRestService
and RestServiceBase. The elements (methods and fields) marked in
red are extracted into a new class while the others are kept. From
the example, we make the following observations:
• First, three blocks of successively located methods were ex-
tracted into the new class. That is, the ten extracted methods
are not uniformly distributed across the document, but gather-
ing in three consecutive physical regions (blocks).
• Second, physically adjacent methods were frequently classified
into the same classes. Among the 24 pairs of the adjacent meth-
ods, only 21%=5/24 were broken by the class decomposition.
To reveal why successively located methods are often semanti-

cally related (and are extracted together), we first looked into the
evolution history of the class in Listing 1. We observed that the
methods had been added in multiple commits. However, for each
of the commits, all methods added by this commit were placed in
a single successive block. That is, for some special reasons (e.g.,
implementation of a new feature), a set of closely related methods
was created and all such methods were placed in a successive block.
As a result, when the God class was decomposed, the whole block
(with successive methods) was extracted into the new class.

Based on the observation, we make the following hypotheses:

Hypothesis 1. Physically adjacent methods/fields are likely to be
allocated to the same class during God class decomposition.

Hypothesis 2. During God class decomposition, developers often
extract method/field blocks (with successive methods/fields) instead
of individual methods/fields.

131

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tianyi Chen, Yanjie Jiang, Fu Fan, Bo Liu, and Hui Liu

1 public class StreamsSourceRestService {

2 private static final String HTTP

3 p r i v a t e S e r v l e t C o n t e x t s e r v l e t C o n t e x t
4 p r i v a t e D a t a S t o r e F a c t o r y d a t a S t o r e F a c t o r y
5 p r i v a t e I D a t a S t o r e d b S t o r e
6 p r i v a t e A p p l i c a t i o n C o n t e x t appCtx
7 p r i v a t e I S c o p e s c o p e
8 p r i v a t e An tMed i aApp l i c a t i o nAdap t e r a p p I n s t a n c e
9 protected static Logger logger

10 public Result addStreamSource ()

11 public String getRTSPSteramURI ()

12 public Result addIPCamera ()

13 public Result addSource ()

14 p r i v a t e v o i d a d d S o c i a l E n d p o i n t s ()
15 public Result getCameraError ()

16 public Result synchUserVodList ()

17 public Result updateCamInfo ()

18 public String [] searchOnvifDevices ()

19 public Result moveUp ()

20 public Result moveDown ()

21 public Result moveLeft ()

22 public Result moveRight ()

23 p r i v a t e A p p l i c a t i o n C o n t e x t g e tAppCon t e x t ()
24 p u b l i c An tMed i aApp l i c a t i o nAdap t e r g e t I n s t a n c e ()
25 p u b l i c I S c o p e g e t S c o p e ()
26 p u b l i c v o i d s e t S c o p e ()
27 p u b l i c I D a t a S t o r e g e t S t o r e ()
28 p u b l i c v o i d s e t D a t a S t o r e ()
29 p u b l i c v o i d s e t C ame r a S t o r e ()
30 public boolean validateIPaddress ()

31 public boolean checkStreamUrl ()

32 public boolean checkIPCamAddr ()

33 p u b l i c D a t a S t o r e F a c t o r y g e t D a t a S t o r e F a c t o r y ()
34 p u b l i c v o i d s e t D a t a S t o r e F a c t o r y ()
35 }

Listing 1: Positions of Methods Extracted During Class
Decomposition

3.2 Validation
To validate the hypotheses, we collected a set of real-world God
classes as well as their decomposition solutions as follows:
• First, we selected Java projects from Github that were ranked in
the top 1,000 based on their stars.We further ranked such projects
according to their project names (resulting in a list 𝑃𝑟𝑜 𝑗𝑠) and
tried to discover God classes from them in order.
• Second, from the first project in 𝑃𝑟𝑜 𝑗𝑠 , we leveraged Refactoring-
Miner [45] to identify God class-related refactorings (i.e., extract
super class, extract sub class, and split class) applied to this project,
and removed the project from the list 𝑃𝑟𝑜 𝑗𝑠 . RefactoringMiner
was used because it represents the state of the art in refactoring
discovery.
• Third, we analyzed the reported potential refactorings and final-
ized a list of manually confirmed God classes as well as their
decomposition solutions.
• If the allocated time slot (one week) ran out, the collection termi-
nated. Otherwise, we turned to the second step and continued
with the next project.
Notably, not all God class-related refactorings (i.e., extract su-

per class, extract sub class, and split class) are associated with God
classes, and thus manual analysis and validation is indispensable.
The manual analysis is not only time-consuming but also subjective
because we still lack quantitative guidance on the identification

Table 1: Discovered Refactorings for Class Decomposition

Items Values (Average)
Extracted Methods 13.65
Extracted Fields 4.09
Extracted Method Blocks 2.87
Extracted Field Blocks 1.31
Extracted Isolated Methods 0.87
Extracted Isolated Fields 0.52
Methods per Extracted Method Block 4.75
Fields per Extracted Field Block 3.12

of the refactoring intents: These refactorings could be employed
for various purposes besides the decomposition of God classes. To
make the process as objective and reproducible as possible, accord-
ing to our initial analysis on the data we got about the false positive
in the data, we defined the following objective criterion to exclude
false positives: If the split Class has less than 20 methods or less
than 20% of its methods have been moved out of it, it is unlikely to
be a God class and it is excluded for further manual analysis. Such
criteria are empirically to exclude false positives (so as to reduce
the cost of manual analysis). There might be a few true positive
filtered in this step, but finding them is too costly. For the remaining
classes split by the reported refactoring, two authors of the paper
manually analyzed the likely purpose of the refactorings. They first
analyzed the size of the decomposed classes and the number of
newly added features (methods and fields) in the new classes. If the
refactorings were conducted to move a small number of features
from the original normal-sized class to recently added classes where
most of the features were not moved from the original class, it is
likely that the original class is not a God class. It just happened
that the developers created new classes and some features of the
original class were moved to the new classes for some reasons like
feature envy. The two authors analyzed each of the potential God
classes independently. In case of inconsistency, they discussed to-
gether, and they managed to reach a consensus on all cases. The
kappa coefficient of 0.492 suggests moderate consistency between
the participants.

The data collection resulted in 54 God classes and their original
solutions coming from 25 Java projects. For each God class, we
enumerated each pair of the adjacent methods within the God class
and validated whether they were allocated to the same class during
the God class decomposition. We also analyzed adjacent fields in
the same way. Our analysis results validated Hypothesis 1:
• Adjacent methods are much more likely than others to be allo-
cated to the same class during God class decomposition. The
possibility for two adjacent methods to be allocated to the same
class is 84.7%, substantially higher than that between randomly
selected method pairs (58.7%). To rigorously and quantifiably
validate the hypothesis, we conducted statistical testing on our
data. The low p-value (1.6e-10) from the U test indicates that
adjacent methods are significantly more likely to be allocated
to the same classes. To validate the universality of the hypothe-
sis, we analyzed our data and found that in 50 out of 54 God
classes, adjacent method pairs were at least 20% more likely to

132

A Position-Aware Approach to Decomposing God Classes ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 1: Overview of the Proposed Approach

be allocated to the same classes compared to non-adjacent pairs.
This suggests that the influence of position is highly prevalent.
• Adjacent fields also have a great possibility of being allocated
to the same class. The average possibility is 83.2%, comparable
to that (84.7%) of adjacent methods.
To validate Hypothesis 2, we investigated how methods/fields

had been extracted from the 54 analyzed God classes. The results
are presented in Table 1 where we make the following observations:
• Methods are often extracted as blocks. On average, 13.65 meth-
ods are extracted when an extract class refactoring is con-
ducted where 94%=(13.65-0.87)/13.65 of the methods are ex-
tracted with their neighbors. Only 6%=0.87/13.65 are extracted
as isolated individuals, i.e., none of their neighbors are ex-
tracted together with them. The same is true for fields. Around
87%=(4.09-0.52)/4.09 of the fields are extracted as blocks (i.e.,
with their neighbors).
• The size of the extracted blocks is considerable. The average size
of method blocks is 4.75, and the average size of field blocks is
3.12. It may suggest that once amethod is selected for extraction,
we may identify four additional methods around the selected
one to be extracted together with it.

4 APPROACH
4.1 Overview
An overview of the proposed approach (ClassSplitter) is presented
in Fig. 1. Overall, it is composed of two parts. In the first part, it com-
putes three categories of semantic relationships among software
entities within the given God class. In the second part, it employs a
customized clustering algorithm to classify software entities (i.e.,
methods and fields) into groups where each group represents a
new class. For a give God class 𝐺𝐶 =< 𝑓1, 𝑓2 . . . 𝑓𝑛,𝑚1,𝑚2 . . .𝑚𝑘 >

where 𝑓𝑖 and𝑚 𝑗 represent fields and methods within the class, the
proposed approach works as follows:
• It computes the metrics-based similarity (noted as𝑀𝑆 (𝑚𝑖 ,𝑚 𝑗)),
the position-based similarity (noted as 𝑃𝑆 (𝑚𝑖 ,𝑚 𝑗)), and the
function-based similarity (noted as 𝐹𝑆 (𝑚𝑖 ,𝑚 𝑗)) between any
pair of methods within the God class;
• It initializes some small groups by connecting methods that
are highly similar in function, i.e., with great 𝐹𝑆 (𝑚𝑖 ,𝑚 𝑗). The

rationale for the initial grouping is that highly similar methods
should be classified into the same group (class).
• It adjusts the initial groups according to the methods’ positions.
If an initial group (of methods) is separated physically by other
methods into smaller groups, the proposed approach replaces
the initial group with the smaller ones so that all elements
within a single group are physically consecutive. If a sequence
of small groups (each contains a single method) is physically
consecutive, the proposed approach concatenates them as a
single group.
• It merges small groups according to their similarity in code
metrics, positions, and functions.
• It allocates fields within the God class to the groups (classes)
generated in the preceding steps. The allocation relies on the
coupling (field accesses) between fields and classes.
• The final groups are suggested as new classes to replace the
original God class.
The key steps are explained in detail in the following sections.

4.2 Computing Function-based Similarity
The function-based similarity (FS) measures the similarity between
two methods concerning their functions. It is likely that two meth-
ods implementing similar functionalities had better been allocated
to the same class during God class decomposition. However, the
computation of function-based similarity could be challenging [11].
To this end, in this paper, we leverage the language model Sentence-
T5 [35] to compute the function-based similarity.

ST5 is a fine-tuned version of SBERT [40], specially trained with
a public dataset (i.e., CodeSearchNet [26]) by mapping source code
to their functional descriptions. It could turn a piece of source code
into a digital vector, and the resulting vector may represents its
functional information and could be employed for various soft-
ware engineering tasks[13]. In this paper, we leverage Sentence-T5
to embed each method into a 768-dimensional dense vector. Af-
ter that, we compute the function-based similarity(FS) between
the two methods by first computing the Cosine similarity of their
corresponding vectors:

𝐹𝑆 ′ (𝑚𝑖 ,𝑚 𝑗) =
−→𝑚𝑖 · −→𝑚 𝑗

−→𝑚𝑖

 ·

−→𝑚 𝑗

 (1)

133

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tianyi Chen, Yanjie Jiang, Fu Fan, Bo Liu, and Hui Liu

where −→𝑚 is the vector of method𝑚. Notably, the vectors generated
by ST5 may contain negative numbers, and thus 𝐹𝑆 ′ (𝑚𝑖 ,𝑚 𝑗) could
be negative as well. To ensure that the similarity value falls between
0 and 1, we perform linear normalization on 𝐹𝑆 ′:

𝐹𝑆 (𝑚𝑖 ,𝑚 𝑗) =
𝐹𝑆 ′ (𝑚𝑖 ,𝑚 𝑗) −𝑚𝑖𝑛𝐹𝑆′

𝑚𝑎𝑥𝐹𝑆′ −𝑚𝑖𝑛𝐹𝑆′
(2)

where 𝑚𝑖𝑛𝐹𝑆′ and 𝑚𝑎𝑥𝐹𝑆 ′ represent the minimal and maximal
values of 𝐹𝑆 ′ for a given God class.

4.3 Computing Position-based Similarity
According to our experience, physically adjacent methods are often
closely related in semantics as well, and thus in most cases, they
should be allocated to the same classes during God class decompo-
sition.

Tomeasure how close two elements are, we compute the position-
based similarity (PS) between two methods𝑚𝑖 and𝑚 𝑗 as follows:

𝑃𝑆 (𝑚𝑖 ,𝑚 𝑗) =
1

|𝑝𝑚𝑖
− 𝑝𝑚 𝑗

| (3)

where 𝑝𝑚 is the relative position (index) of the method 𝑚. If its
enclosing class has declared 𝑖 elements before𝑚, 𝑝𝑚 equals 𝑖 + 1.
Notably, 𝑃𝑆 ranges from zero to one. If two methods are adjacent,
their position-based similarity is maximized (one).

4.4 Computing Metrics-based Similarity
Code metrics, especially coupling and cohesion between software
entities, have been widely exploited for the automated split of large
software entities [25] [2]. Consequently, ClassSplitter employs code
metrics as well for God class decomposition. More specifically,
it leverages two metrics, SimD [25] and call-based dependence
between methods (CDM) [7].

𝑆𝑖𝑚𝐷 was proposed by Gui and Scott [25] to measure the co-
hesion between two methods. Suppose that instance variables ac-
cessed by methods𝑚𝑖 and𝑚 𝑗 are represented as two sets 𝑉𝑚𝑖

and
𝑉𝑚 𝑗 , respectively, 𝑆𝑖𝑚𝐷 (𝑚𝑖 ,𝑚 𝑗) is computed as follows:

𝑆𝑖𝑚𝐷 (𝑚𝑖 ,𝑚 𝑗) =
|𝑉𝑚𝑖
∩𝑉𝑚 𝑗

|
|𝑉𝑚𝑖
∪𝑉𝑚 𝑗

| (4)

where 𝑉𝑚𝑖
∩ 𝑉𝑚 𝑗

is the overlap between two sets 𝑉𝑚𝑖
and 𝑉𝑚 𝑗 ,

representing the instance variables accessed by both𝑚𝑖 and𝑚 𝑗 .
Consequently, 𝑆𝑖𝑚𝐷 (𝑚𝑖 ,𝑚 𝑗)measures to what extent𝑉𝑚𝑖

and𝑉𝑚 𝑗

overlap. 𝑆𝑖𝑚𝐷 ranges between zero and one, suitable to be taken as
a similarity. Notably, instance variables accessed by a method refer
to all variables (fields) defined outside the method but accessed by
the method.

The call-based dependence between methods (CDM) was pro-
posed by Bavota et al. [7] to measure the coupling between two
methods concerning their inter-invocations. Let 𝐶𝑎𝑙𝑙𝑠 (𝑚𝑖 ,𝑚 𝑗) be
the number of calls performed by method𝑚𝑖 to method𝑚 𝑗 , and
𝐶𝑎𝑙𝑙𝑠𝑖𝑛 (𝑚 𝑗) be the total number of incoming calls to𝑚 𝑗 , the call-
based dependence from𝑚𝑖 to𝑚 𝑗 is computed as follows:

𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗) =
{
𝐶𝑎𝑙𝑙𝑠 (𝑚𝑖 ,𝑚 𝑗)
𝐶𝑎𝑙𝑙𝑠𝑖𝑛 (𝑚 𝑗) if 𝐶𝑎𝑙𝑙𝑠𝑖𝑛 (𝑚 𝑗) ≠ 0

0 otherwise
(5)

𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗) represents how many percentages of the
invocations of𝑚 𝑗 are made by𝑚𝑖 . Notably, 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗)

Algorithm 1: Function-based Clustering
Input: 𝐹𝑆 //Function-based similarity
𝑚𝑒𝑡ℎ𝑜𝑑𝑠 //all methods within the God class
Output:𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 // Initial groups of methods

1 // represent methods as a graph
2 𝐺𝑟𝑎𝑝ℎ=CreateGraph(𝑚𝑒𝑡ℎ𝑜𝑑𝑠);
3 // get the edges sorted by FS value
4 𝑒𝑑𝑔𝑒𝑠 ← ∅;
5 size=𝐺𝑟𝑎𝑝ℎ.NumberOfNodes();
6 for i=0;i<size;i++ do
7 for j=i+1;j<size;j++ do
8 𝑒𝑑𝑔𝑒𝑠 .append(𝑚𝑒𝑡ℎ𝑜𝑑𝑠[i],𝑚𝑒𝑡ℎ𝑜𝑑𝑠[j], 𝐹𝑆[i][j]);
9 end

10 end
11 // Sort edges in descending order
12 𝑒𝑑𝑔𝑒𝑠 .sortByWeight();
13 // connect methods with high similarity
14 for k=0; k<edges.size*𝜃 ; k++ do
15 𝐺𝑟𝑎𝑝ℎ.addEdge(𝑒𝑑𝑔𝑒𝑠[k]);
16 if 𝐺𝑟𝑎𝑝ℎ.IsConnected() then
17 𝐺𝑟𝑎𝑝ℎ.removeEdge(𝑒𝑑𝑔𝑒𝑠[k]);
18 break;
19 end
20 end
21 // represent the graph as a few groups
22 𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 ← ∅;
23 𝑠𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠=𝐺𝑟𝑎𝑝ℎ.getConnectedSubgraphs();
24 foreach 𝑔 in 𝑠𝑢𝑏𝐺𝑟𝑎𝑝ℎ𝑠 do
25 𝑔𝑟𝑜𝑢𝑝 = g.toList();
26 𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .append(𝑔𝑟𝑜𝑢𝑝);
27 end
28 return𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠

has directions, and thus 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗) is not necessarily
equivalent to 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐶𝐷𝑀 (𝑚 𝑗 ,𝑚𝑖). To make the metrics com-
mutative, Bavota et al. [7] defined the final commutative coupling
metrics as follows:

𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗) = max
(
𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗), 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐶𝐷𝑀 (𝑚 𝑗 ,𝑚𝑖)

) (6)

We notice that 𝑆𝑖𝑚𝐷 (𝑚𝑖 ,𝑚 𝑗) and 𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗) measure the
coupling between two methods (𝑚𝑖 to 𝑚 𝑗) concerning different
aspects, i.e., variable access and method invocation. Consequently,
in this paper, we leverage both of them as follows:

𝑀𝑆 (𝑚𝑖 ,𝑚 𝑗) =
𝑆𝑖𝑚𝐷 (𝑚𝑖 ,𝑚 𝑗) +𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗)

2
(7)

𝑀𝑆 (𝑚𝑖 ,𝑚 𝑗) is the metrics-based similarity between methods𝑚𝑖

and𝑚 𝑗 . It equals the average of 𝑆𝑖𝑚𝐷 (𝑚𝑖 ,𝑚 𝑗) and 𝐶𝐷𝑀 (𝑚𝑖 ,𝑚 𝑗).
We take the average instead of the summary because the former
ranges from zero to one whereas the latter could be larger than
one.

134

A Position-Aware Approach to Decomposing God Classes ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

4.5 Clustering-based Decomposition
In the preceding sections, we have computed a set of similarities
between methods. Based on these similarities, in this section, we
propose a clustering-based approach to decompose a given God
class. Overall, the approach is composed of four parts. In the first
part, it clusters methods according to function similarity. In the
second part, it adapts the initial clusters by splitting inconsecutive
clusters (that are physically split by methods outside the clusters)
to ensure that all resulting clusters are consecutive blocks. It also
merges all adjacent small clusters. In the third part, it merges small
clusters. Finally, it allocates fields to clusters (of methods), and the
resulting clusters are recommended as new (and smaller) classes to
replace the God class. All four parts of the clustering algorithm are
explained in detail in the following paragraphs.

4.5.1 Function-based Clustering. The first part of the clustering
called function-based clustering, is presented in Algorithm 1. The
algorithm takes the methods within the God class as well as their
function-based similarity (𝐹𝑆) as input. It should decompose the
methods into several groups (clusters) noted as𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .

In the first place, it represents all methods as a graph (Line 2
of Algorithm 1). That is, it creates a unique node for each of the
methods, but no edges are added. Lines 4-10 collect potential edges
between methods with their function-based similarity as the weight
of the edges. The edges are sorted in descending order (Line 12).
Lines 14-20 try to connect methods with high similarity by adding
the edges to the graph (Line 15). The algorithm would add the top
𝜃 percentages (empirically set to 8% with a small set of samples)
of the edges unless the graph becomes a connected graph, i.e., all
methods are connected. In case the newly added edge makes the
graph a connected graph (Line 16), the algorithm would remove
the edge so that the graph is not connected. Lines 22-27 represent
each connected subgraph as a group of methods. All such groups
are added to a list 𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 that is finally returned by the
algorithm.

4.5.2 Position-based Clustering. The second part of the clustering,
called position-based clustering, is presented in Algorithm 2. The
algorithm takes the groups of methods (𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠) generated
by the preceding section (i.e., function-based clustering) as well as
the methods’ position-based similarity (𝑃𝑆) as input. It adapts the
groups in𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 and returns the modified𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠

as output.
The algorithm takes two steps to modify𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 . The

first step, as shown in Lines 2-12, is to split inconsecutive clusters
into smaller but consecutive clusters. A cluster (of methods) is
consecutive if and only if
• It is composed of a single method or
• For any pair of methods (𝑚1 and𝑚2) within the cluster, there
does not exist any method that is 1) not belonging to the cluster
and 2) physically located between𝑚1 and𝑚2.

More vividly, a cluster of methods is consecutive if all such methods
form a consecutive block within the God class. If it is not consec-
utive, we spit it into several consecutive ones. As a result of the
splitting, all clusters are consecutive.

In the second step, the algorithm merges some small and succes-
sive clusters that are composed of a single method. We call such

Algorithm 2: Position-based Clustering
Input: 𝑃𝑆 //Position-based similarity
𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 // Initial clusters of methods in the God class
Output:𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 // Adapted clusters of methods

1 //splitting inconsecutive clusters
2 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 ← ∅;
3 size=𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .size();
4 for i=0;i<size;i++ do
5 if 𝑖𝑠𝐼𝑛𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒(𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 [𝑖], 𝑃𝑆) then
6 𝑔𝑟𝑜𝑢𝑝𝑠 =𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠[i].splitByPosition(𝑃𝑆);
7 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .appendAll(𝑔𝑟𝑜𝑢𝑝𝑠);
8 else
9 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 [𝑖]);

10 end
11 end
12 𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 ← 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠;
13 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 ← ∅;
14 //merging successive singleton groups
15 methodGroups.sortByPosition();
16 size=𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .size();
17 for i=0;i<size;i++ do
18 if !IsSingletonGroup(𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 [𝑖]) then
19 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠.𝑎𝑑𝑑 (𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 [𝑖]);
20 continue;
21 else
22 //Looking for successive singleton groups
23 for j=i+1;j<size;j++ do
24 if IsSingletonGroup(𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 [𝑗]) then
25 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐺𝑟𝑜𝑢𝑝𝑠 .add(𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 [𝑗]);
26 else
27 break;
28 end
29 end
30 if 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐺𝑟𝑜𝑢𝑝𝑠.𝑠𝑖𝑧𝑒 () > 1 then
31 //merge successive singleton groups
32 g =𝑀𝑒𝑟𝑔𝑒𝐺𝑟𝑜𝑢𝑝𝑠 (𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐺𝑟𝑜𝑢𝑝𝑠);
33 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠.𝑎𝑑𝑑 (𝑔);
34 // skip all merged singleton groups
35 i=i+𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝐺𝑟𝑜𝑢𝑝𝑠.𝑠𝑖𝑧𝑒 () − 1;
36 else
37 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠.𝑎𝑑𝑑 (𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 [𝑖]);
38 end
39 end
40 end
41 𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 ← 𝑡𝑒𝑚𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠;

groups singleton groups. The algorithm ranks the clusters by posi-
tion (Line 15), enumerates all groups (Lines 16-40), and validates
whether a given group is a singleton (Line 18). If yes (the ELSE
branch begins at Line 21), it validates whether the following clus-
ters are singleton groups as well. If it is followed by one or more
singleton groups, all such groups are merged with it (Lines 30-33).

135

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tianyi Chen, Yanjie Jiang, Fu Fan, Bo Liu, and Hui Liu

Algorithm 3: Similarity-based Merging
Input:𝑀𝑆 , 𝑃𝑆 , 𝐹𝑆 , //Similarity metrics
𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 // Initial groups of methods
Output:𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 //Final groups of methods

1 // keep merging the most similar groups
2 unmergeablePairs=∅;
3 while𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .size() > 2 do
4 //retrieve two groups with the greatest similarity,

excluding unmergeable pairs
5 SimGroups=

FindMostSimilarGroups(𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 ,unmergeablePairs);

6 if SimGroups==∅ then
7 break;
8 end
9 // try to merge the groups

10 newGroup=Merge(SimGroups);
11 if TooBig(newGroup) and NotTooClose(newGroup) then
12 // stop merging if the new group is too big
13 unmergeablePairs.add(newGroup);
14 else
15 //merge and replace
16 𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .remove(SimGroups);
17 𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠 .add(newGroup);
18 end
19 end
20 return𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠

Otherwise, no merging is conducted (Line 37). Notable, if multi-
ple groups are merged, we increase the iteration index 𝑖 by the
number of merged clusters so that the merged clusters will not be
enumerated again by the FOR iteration on Line 17.

4.5.3 Similarity-based Merging. The third part of the clustering
called similarity-based merging, is presented in Algorithm 3. The
algorithm takes the initial groups of methods (𝑚𝑒𝑡ℎ𝑜𝑑𝐺𝑟𝑜𝑢𝑝𝑠) gen-
erated by the preceding sections as well as three categories of
similarities as input. The major operation of the algorithm is to
merge groups according to similarities.

The key of the algorithm is a loop (Lines 3-19). On each itera-
tion of the loop, the algorithm first retrieves two groups with the
highest similarity (Line 5) and tries to merge them (Line 10). If the
resulting group is too big (Line 11), the algorithm would discard
merging and notate the pair of groups as unmergeable pairs (Line
13). As a result, on the next iteration, the method invocation Find-
MostSimilarGroups on Line 5 would ignore this pair. The method
FindMostSimilarGroups (Line 5 of Algorithm 3) returns a pair of
highly similar groups. The overall similarity between two groups
𝑔1 and 𝑔2 is defined as follows:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝑖𝑚(𝑔1, 𝑔2)

=
#𝐻𝑠𝑚𝑀𝑆 (𝑔1, 𝑔2) + #𝐻𝑠𝑚𝑃𝑆 (𝑔1, 𝑔2) + #𝐻𝑠𝑚𝐹𝑆 (𝑔1, 𝑔2)

|𝑔1 | ∗ |𝑔2 |
(8)

where |𝑔𝑖 | the number of methods within group𝑔𝑖 . #𝐻𝑠𝑚𝑀𝑆 (𝑔1, 𝑔2),
#𝐻𝑠𝑚𝑃𝑆 (𝑔1, 𝑔2) and #𝐻𝑠𝑚𝐹𝑆 (𝑔1, 𝑔2) represent the number of highly
similar method pairs < 𝑚1 ∈ 𝑔1,𝑚2 ∈ 𝑔2 > concerning the metrics-
based similarity (as defined in Section 4.4), position-based similar-
ity(as defined in Section 4.3), and function-based similarity (as de-
fined in Section 4.2), respectively. Two methods have high metrics-
based similarity if their similarity is greater than 95% of the other
metrics-based similarity; Two methods have high position-based
similarity if they are separated by no more than three methods; Two
methods have high function-based similarity if their similarity is
greater than 93% of the other metrics-based similarity. Note that all
such thresholds are set empirically with a small number of samples.
They could be reset if needed.

We notice that if the new group is too big and the relationship is
not very close(Line 11), the algorithm would give up merging. The
new group merged from groups 𝑔1 and 𝑔2 is too big for merging if
and only if
• The group consists of more than 85% of the source code in the
God class, and
• The group contains more than 85% of the methods within the
God class, and
• The similarity between 𝑔1 and 𝑔2 is smaller than 0.05.
The threshold (i.e., “2”) on Line 3 is employed to guarantee that

the algorithmwould not merge all groups into a single group. Other-
wise, the proposed approach cannot suggest any splitting solutions.
Notably, since the iteration could be broken (Line 7), the number
of the resulting groups is not necessarily two. This allows our ap-
proach to provide reasonable quantities and sizes of new classes
for both complex and simpler God class inputs.

4.5.4 Access-based Field Allocation. In the preceding sections, we
have divided the methods into a few number of groups. Each of the
groups should represent a new class. However, the fields within the
God class have not yet been allocated to the new classes. To this
end, in this section, we allocate them into the new classes according
to code coupling and element positions.

In the first step, we try to assign a field to the class that accesses
the field more frequently than any of the other classes. The fre-
quency of field access is counted by static source analysis. That
is, every field access statement is counted equally as one time of
access, no matter how many times the statement would be involved.
For the remaining fields that have not been allocated for various
reasons, e.g., not accessed by any classes, we allocate them accord-
ing to their neighboring fields. For a given field 𝑓 to be allocated
and a candidate class 𝑐 , the distance-based similarity between 𝑓

and 𝑐 is computed as follows:

𝑝𝑆𝑖𝑚(𝑓 , 𝑐) =
∑︁
𝑓 𝑑∈𝑐

1
|𝑝 (𝑓) − 𝑝 (𝑓 𝑑) | (9)

where 𝑝 (𝑓) and 𝑝 (𝑓 𝑑) represent the positions of fields 𝑓 and 𝑓 𝑑

(within the original God class), respectively. If 𝑐 does not contain
any field yet, the similarity is zero. Field 𝑓 is allocated to the class
with the greatest distance-based similarity to it. In case of a tie, we
randomly select one of the winners.

136

A Position-Aware Approach to Decomposing God Classes ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

5 EVALUATION
5.1 Research Questions
• RQ1: Can ClassSplitter improve the state of the art in the de-
composition of God classes?
• RQ2: How do different types of similarities (i.e., position-based
similarity, function-based similarity, and metrics-based simi-
larity) employed by ClassSplitter influence its overall perfor-
mance?
• RQ3: To what extent will the performance of ClassSplitter de-
crease if we replace the complex clustering in Section 4 with a
traditional distance-based clustering algorithm?
ClassSplitter is built on the assumption that physically adjacent

software entities have a greater chance to be allocated into the
same classes during God class decomposition. RQ1 concerns the
performance of ClassSplitter with regard to the state-of-the-art
approaches. To answer RQ1, we compared ClassSplitter against
the approach proposed by Bavota et al. [7], the approach proposed
by Akash et al. [1], and the approach proposed by Alzahrani and
Musaad [2]. Note that the papers did not explicitly name the ap-
proaches, and thus for convenience in this paper, we call them
Bavota’s, Akash’s, and Alzahrani’s, respectively. They were selected
for comparison because they were the latest ones (in this line) that
we can find, and thus they represent the state of the art for God
class decomposition. RQ2 concerns the impact of the three types of
similarities exploited by ClassSplitter, i.e., position-based similarity,
function-based similarity, and metrics-based similarity. Answer-
ing RQ2 would validate the usefulness of the exploited similarities.
RQ3 concerns the usefulness of the complex clustering algorithm
proposed in Section 4. To answer this question, we should replace
it with a simple distance-based clustering algorithm, and investi-
gate how the performance of ClassSplitter changes. Answering this
question helps reveal the necessity of designing a novel clustering
algorithm for ClassSplitter.

5.2 Dataset
To evaluate ClassSplitter and the baseline approaches, we con-
structed a testing dataset by collecting (from Github) real-world
God classes and their solutions that had been proposed and con-
ducted by the original developers. The data collection followed
exactly the same methodology once employed to construct the case
study dataset in Section 3.2. Note that we collected data from top
1000 Java projects in Github except for those that had been involved
in the case study in Section 3.2. The exclusion guranatees that the
testing dataset does not overlap with the case study dataset.

We finally collected 133 God classes and their original (reference)
solutions for evaluation. Each of the solutions is represented as a set
of classes that had been used to replace the corresponding God class.
Such solutions would be employed as a Golden set to quantitatively
assess the solutions proposed by the evaluated approaches, i.e., to
what extent the proposed solutions are similar to the original ones.

5.3 Performance Metrics
To quantitatively assess the performance of the evaluated approaches,
including both ClassSplitter and the baselines, we reuse the per-
formance metrics proposed by Wen and Tzerpos [47]. The metrics,

called MoJoFM, is computed as follows:

𝑀𝑜𝐽𝑜𝐹𝑀 (𝑆, 𝑅𝐸𝐹) = 100% − 𝑚𝑛𝑜 (𝑆, 𝑅𝐸𝐹)
𝑚𝑎𝑥 (𝑚𝑛𝑜 (∀𝑆, 𝑅𝐸𝐹)) (10)

where 𝑆 is the solution to be evaluated and 𝑅𝐸𝐹 is the reference
solution retrieved from the golden set.𝑚𝑛𝑜 (𝑆, 𝑅𝐸𝐹) is the minimum
number of move or join operations to transform a partition (solu-
tion) 𝑆 to another partition 𝑅𝐸𝐹 . It is also called distance between
𝑆 and 𝑅𝐸𝐹 .𝑚𝑎𝑥 (𝑚𝑛𝑜 (∀𝑆, 𝑅𝐸𝐹)) is the maximum possible distance
from 𝑅𝐸𝐹 to any possible partition (solution) for the same God class.
Notably, MoJoFM was designed to evaluate a single solution for
a single God class. To compare various solutions proposed by the
evaluated approaches for various God classes, we calculated the
average MoJoFM for each of the evaluated approaches by averag-
ing the MoJoFM on all solutions generated by a single approach.
Cohesion and coupling code metrics are not used for quantitative
performance evaluation as they have already been utilized by the
proposed approach and baselines to guide the decomposition of
complex classes. Assessing their impact with the samemetrics could
potentially overstate their performance.

Besides the quantitative metrics, i.e., MoJoFM, we also measured
the quality of suggested solutions manually and qualitatively. The
manual qualitative measurement followed the widely-used 5-point
Likert Scale [18]. Consequently, for any recommended solution for
a God class, the participants should rate its quality as one of the
following five scales:
• Excellent (4 points), i.e., better than my solution;
• Good (3 points), i.e., comparable to my solution;
• Acceptable (2 points), i.e., reasonable but request small modifi-
cation;
• Fair (1 point), i.e., deserving significant modification;
• Poor (0 points), i.e., unreasonable and useless.

We also provided a simplified rating by asking the participants to
select the preferred solution for each of the God classes. That is,
FOR each God class, we presented the solution recommended by
our approach and the solutions suggested by the baselines, and
the participants should select the winner. Based on the selection,
we computed how often ClassSplitter outperformed the baseline.
To reduce the potential bias, we employed an anonymous review
process where the participants did not know the recommender
(ClassSplitter or the baselines) of the solutions. We requested three
participants to rank all 133 items and thus assessed the consistency
among them. All of the participants had more than three years of
Java programming experience. Notably, since we had four evaluated
approaches and the manual ranking could be tedious and time-
consuming, we only selected the top 2 of the evaluated approaches
(ranked by quantitative metrics, i.e., their average MoJoFM) for the
manual ranking.

5.4 Improving the State of the Art
To answer research question RQ1, we first compared ClassSplit-
ter against three baselines, i.e., Bavota’s, Akash’s, and Alzahrani’s.
Notably, our approach and the first two baselines have several
configuration parameters. To optimize their settings, we randomly
sampled five God classes and searched for the best settings (re-
garding MoJoFM). The resulting settings (𝑤𝑆𝑆𝑀 = 0.2, 𝑤𝐶𝐷𝑀 =

0.2, 𝑤𝐶𝑆𝑀 = 0.6, 𝑚𝑖𝑛𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝑄3 for Bavota’s; 𝑤𝑆𝑆𝑀 = 0.2,

137

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tianyi Chen, Yanjie Jiang, Fu Fan, Bo Liu, and Hui Liu

𝑤𝐶𝐷𝑀 = 0.3, 𝑤𝐶𝑆𝑀 = 0.5,𝑚𝑖𝑛𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 0.36 for Akash’s; and
𝜃 = 0.08 for ClassSplitter) were used in the remaining cases. The
evaluation results of average MoJoFM value are presented in Ta-
ble 2. MoJoFM-M and MoJoFM-F are average MoJoFM of methods
and fields. Note that Alzahrani’s clusters methods only and fields
are ignored. Consequently, its performance metrics on fields are
unavailable.

From Table 2, we make the following observations:
• Bavota’s outperformed the other two baselines. Its average Mo-
JoFM in method clustering is 32.6%, substantially higher than
that of Akash’s (26.4%) and Alzahrani’s (22.5%). Its performance
(43.9%) in field clustering is also better than that of Akash’s
(30.2%).
• ClassSplitter resulted in substantially greater MoJoFM than the
baselines. Compared to the best baseline (i.e., Bavaota’s), it im-
proved the average MoJoFM by 47%=(49.6%-33.6%)/33.6%, while
the low p-value(0.00036) in the U test also suggests the signifi-
cantly improvement in MoJoFM. The improvement in method
clustering (61%=(52.6%-32.6%)/32.6%) is even larger.
According to the specification in Section 5.3, we requested devel-

opers to manually rank the best two approaches, i.e., ClassSplitter
and Bavota’s, and the reference solutions suggested by the original
developers of the involved applications.. The results are presented
in Table 3 where the fourth row specifies how often ClassSplitter’s
solutions were preferred (both absolute frequency and probability).
From this table, we make the following observations:
• Solutions suggested by ClassSplitter were often preferred by
developers. On 78% of the cases, its solutions were preferred
whereas Vavota’s solutions were preferred on only 7% (=1-78%-
15%) of cases. In other cases (15%), they drew.
• The solutions suggested by ClassSplitter are considerably good.
The average ranking is 2.21, between good (i.e., comparable to
my solution, 3 points) and acceptable (i.e., reasonable but request
small modification, 2 points). In contrast, the average ranking
of Bavota’s solutions is 0.92, lower than fair (i.e., deserving
significant modification, 1 point).
• The ranking of reference solution is 3.15(between Good and
Excellent), significantly higher than the solutions given by auto-
matic refactoring tools. The results may suggest that the scores
are positively related to the quality of the solutions.
Based on both quantitative (and objective) assessment and quali-

tative (and subjective) assessment, we conclude that ClassSplitter
substantially improves the state of the art in God class decomposi-
tion. From a code metric perspective, ClassSplitter also significantly
improves code quality: cohesion optimized from average 822 to 122
in LCOM metrics(smaller is better), with average coupling slightly
increased 12%(251 to 282) in MPC metrics(smaller is better). ClassS-
plitter was efficient, taking 10.2 seconds on average to decompose
a single God class.

5.5 Effect of Different Similarities
To validate the usefulness of the three categories of similarities, i.e.,
position-based similarity, function-based similarity, and metrics-
based similarity, we disabled one of them at a time and repeated
the evaluation. By comparing the overall performance of ClassSplit-
ter with and without the given similarity, we may quantitatively

Table 2: Improving the State of the Art

ClassSplitter Bavota’s Akash’s Alzahrani’s
MoJoFM-M 52.6% 32.6% 26.4% 22.5%
MoJoFM-F 44.9% 43.9% 30.2% –
MoJoFM 49.6% 33.6% 32.3% –

Table 3: Participants’ Ranking

Participant A B C Average
Reference Solution 3.13 3.19 3.14 3.15
ClassSplitter 2.21 2.04 2.38 2.21
Bavota’s 0.88 0.83 1.05 0.92
#Wins 104(78%) 100(75%) 109(82%) 104(78%)
#Ties 26(20%) 24(18%) 8(6%) 19(15%)

Table 4: Effect of Different Similarities

Setting Average MoJoFM
Methods & Fields Methods Fields

Enabling All 49.6% 52.6% 44.9%
Disabling Position 35.0% 30.1% 37.0%
Disabling Function 46.7% 48.2% 41.2%
Disabling Metrics 49.2% 51.5% 46.8%

reveal the impact of the given similarity. The evaluation results are
presented in Table 4. While the second row of the table presents
the performance of ClassSplitter in the default setting (i.e., all three
categories of similarities were exploited), the following three rows
present the performance of ClassSplitter when one of the three
types of similarities was disabled.

From the table, we make the following observations:
• First, all of the employed similarities are useful. Disabling any of
the similarities resulted in a reduction in performance.
• Second, position-based similarity had the greatest impact on the
overall performance of ClassSplitter. Disabling it resulted in the
greatest reduction in performance: The reduction on average
method MoJoFM was 22.5 percentage points (pp) =52.6%-30.1%
whereas the reduction caused by disabling other similarities var-
ied from 4.4 pp=52.6%-48.2% (disabling function-based similarity)
and 1.1 pp=52.6%-51.5% (disabling metrics-based similarity).
• Third, exploiting similarities had a greater impact on the cluster-
ing of methods than the clustering of fields. For example, by ex-
ploiting the position-based similarity, ClassSplitter improved the
performance in method clustering by 75%=(52.6%-30.1%)/30.1%
whereas the performance in field clustering was improved by
21%=(44.9%-37.0%)/37.0%. The major reason for the difference is
that most fields are allocated according to field accesses instead
of position-based similarity. However, exploiting position-based
similarity would influence the clustering of methods, and the
latter in turn would influence the clustering (allocation) of fields.
Consequently, exploiting such metrics would finally influence
the clustering of fields.
We conclude based on the preceding analysis that all three cate-

gories of similarities are useful and the position-based similarity is

138

A Position-Aware Approach to Decomposing God Classes ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

by far the most valuable. The results also validate the usefulness of
relative positions of methods/fields in God class decomposition.

5.6 Effect of Customized Clustering Algorithm
To improve the performance of ClassSplitter, we customized a
multiple-step clustering algorithm in Section 4.5 to cluster methods
according to the position-based similarity, function-based similar-
ity, and metrics-based similarity between methods. To validate the
necessity of the customized clustering algorithm as specified in Sec-
tion 4.5, we replaced it with a traditional distance-based clustering
algorithm where distances are computed as follows :

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚1,𝑚2) = −(𝑀𝑆 (𝑚1,𝑚2) + 𝐹𝑆 (𝑚1,𝑚2) + 𝑃𝑆 (𝑚1,𝑚2)) (11)

𝑀𝑆 (𝑚1,𝑚2), 𝐹𝑆 (𝑚1,𝑚2), and 𝑃𝑆 (𝑚1,𝑚2) represent the metrics-
based similarity, function-based similarity, and position-based sim-
ilarity between methods𝑚1 and𝑚2, respectively. Consequently,
the more similar the two methods are, the smaller their distance is.
Notably, the clustering algorithm in Section 4.5 is used to cluster
methods only, and thus we did not evaluate how it may influence
the allocation of fields.

Our evaluation results suggest that replacing the customized
clustering algorithm would substantially reduce the performance of
method clustering. The average MoJoFMwas reduced from 52.6% to
44%. In other words, customizing the clustering algorithm improved
the performance by 20%=(52.6%-44%)/44%. We conclude based on
the analysis that customizing the clustering algorithm is critical for
the performance of ClassSplitter.

5.7 Threats to Validity
A threat to internal validity is that the conclusions were drawn on
a limited number of cases (133 God classes in the evaluation and
54 classes in the empirical study). Special characters of such cases
may bias the conclusions. Noting that the data collection is tedious
and time-consuming, involving extensive human intervention. Con-
sequently, it is difficult to significantly enlarge the datasets. We
collected data from projects developed by different teams/compa-
nies, and come from different domains, e.g., Android framework,
Android Apps, distributed computing, data engineering, software
testing, decompiler, Android application development environment,
cloud-native microservices, database, communication, and game en-
gines. Such projects have different numbers of developers (varying
from 1 to 1480 with a median of 26), different numbers of commits
(varying from 5 to 34186, with a median of 3954), and different
histories (varying from 2 days to 14 years, with a median of 3 years).
The size of the God classes varies from 64 to 4869 LOC (with a
median of 470 LOC), and the number of methods/fields within a
single God class varies from 20 to 270 (with a median of 43). All
such diverse statistics may suggest that the datasets have a good
diversity, and may reduce the threat from the size of the dataset.

The first threat to construct validity is that the benchmark em-
ployed by the evaluation could be inaccurate. While computing the
performance metrics (i.e., MoJoFM), we compared the suggested
solutions against solutions in the benchmark (i.e., actual solutions
proposed and conducted by the original developers). However, solu-
tions different from the golden set could be reasonable (and correct)
as well because the decomposition of classes is often subjective

and there could be multiple good solutions for a single God class.
To reduce the threat, we also requested experienced developers to
rank the suggested solutions, and the manual ranking confirmed
the conclusions drawn with objective performance metrics. How-
ever, the manual ranking could be inaccurate as well. To reduce
the threat, we requested experienced developers with at least three
years of Java experience. We also requested multiple participants
to rank each of the cases, and the resulting Kappa coefficient (0.57)
suggested a moderate agreement between participants.

The second threat to construct validity is that the data collec-
tion in Section 3 and Section 5 is subjective and thus the resulting
God classes could be debatable. To reduce the threat, we requested
multiple experienced participants (with more than 5 years of Java
programming experiences) to collect data independently, and a
Kappa coefficient (0.492) suggested a moderate agreement between
participants. We also requested them to discussed together concern-
ing the inconsistent cases, and they managed to reach a consensus
on all cases. We also publish the dataset [15] for further validation.

The third threat to construct validity is that all the data collected
in this research are from the most stared java project on GitHub.
This would result in the most high-quality projects, which in turn
may lead to bias. Notably, selecting projects by stars is one of the
most common strategies for selecting projects in papers related
to software refactoring. The most recent example is the paper by
Dong et al. [21]. Besides, refactoring solutions discovered from such
high-quality projects are often of high quality, which helps reduce
the threats to construct validity.

6 CONCLUSIONS AND FUTUREWORK
Decomposing God classes is challenging, and thus automated de-
composition is highly preferred. To this end, in this paper, we pro-
pose a new approach to decomposing God classes. The approach
is novel in that it exploits features (like positions of methods and
fields) that have not yet been exploited by existing approaches in
this line, and it customizes a clustering algorithm, especially for God
class decomposition. The key insight has been validated by a study
presented in the paper, and the effect of the proposed approach has
been validated with real-world God classes. Our evaluation results
suggest that the proposed approach can substantially improve the
state of the art in God class decomposition.

Although the proposed approach is not language-specific, the
prototype implementation accepts Java programs only. The code
analysis component (that extracts code metrics from source code)
is language-specific, and it should be re-implemented if additional
programming languages should be considered in the future. Con-
sidering the similarity between God class and long method, it is
potentially fruitful in the future to decompose long methods with
the key inside presented in this paper.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers from
ASE 2024 for their insightful comments and constructive sugges-
tions. This work was partially supported by the National Natural
Science Foundation of China (62232003 and 62172037), China Na-
tional Postdoctoral Program for Innovative Talents (BX20240008)
and CCF-Huawei Populus Grove Fund (CCF-HuaweiSE202411).

139

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tianyi Chen, Yanjie Jiang, Fu Fan, Bo Liu, and Hui Liu

REFERENCES
[1] Pritom Saha Akash., Ali Zafar Sadiq., and Ahmedul Kabir. 2019. An Approach

of Extracting God Class Exploiting Both Structural and Semantic Similarity. In
Proceedings of the 14th International Conference on Evaluation of Novel Approaches
to Software Engineering - ENASE. INSTICC, SciTePress, 427–433. https://doi.org/
10.5220/0007743804270433

[2] Musaad Alzahrani. 2022. Extract Class Refactoring Based on Cohesion and
Coupling: A Greedy Approach. Computers 11, 8 (2022), 123.

[3] Nicolas Anquetil, Anne Etien, Gaelle Andreo, and Stéphane Ducasse. 2019. De-
composing god classes at siemens. In 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 169–180.

[4] Nicolas Anquetil and Timothy C Lethbridge. 1999. Experiments with Clustering
as A Software Remodularization Method. In Sixth Working Conference on Reverse
Engineering (Cat. No. PR00303). IEEE, 235–255.

[5] ant media. 2017. Ant-Media-server. https://github.com/ant-media/Ant-Media-
Server

[6] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni, and Alessandro
Marino. 2016. Comparing and Experimenting Machine Learning Tchniques for
Code Smell Detection. Empirical Software Engineering 21 (2016), 1143–1191.

[7] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2014.
Automating Extract Class Refactoring: An Improved Method and its Evaluation.
Empirical Software Engineering 19 (2014), 1617–1664.

[8] Gabriele Bavota, Andrea De Lucia, and Rocco Oliveto. 2011. Identifying Ex-
tract Class Refactoring Opportunities using Structural and Semantic Cohesion
Measures. Journal of Systems and Software 84, 3 (2011), 397–414.

[9] Kent Beck, Martin Fowler, and Grandma Beck. 1999. Bad Smells in Code. Refac-
toring: Improving the design of existing code 1, 1999 (1999), 75–88.

[10] Neeraj Bhargava, Girja Sharma, Ritu Bhargava, and Manish Mathuria. 2013. Deci-
sion Tree Analysis on j48 Algorithm for Data Mining. Proceedings of international
journal of advanced research in computer science and software engineering 3, 6
(2013).

[11] David Binkley. 2007. Source Code Analysis: A Road Map. In Future of Software
Engineering (FOSE ’07). 104–119. https://doi.org/10.1109/FOSE.2007.27

[12] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent Dirichlet Alloca-
tion. Journal of machine Learning research 3, Jan (2003), 993–1022.

[13] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When Deep Learning Met Code Search (ESEC/FSE 2019). Association for
Computing Machinery, New York, NY, USA, 964–974. https://doi.org/10.1145/
3338906.3340458

[14] Xiangping CHEN, Xing HU, Yuan HUANG, He JIANG, Weixing JI, Yanjie JIANG,
Yanyan JIANG, Bo LIU, Hui LIU, Xiaochen LI, Xiaoli LIAN, Guozhu MENG, Xin
PENG0, Hailong SUN, Lin SHI, BoWANG, ChongWANG0, Jiayi WANG, Tiantian
WANG, Jifeng XUAN, Xin XIA, Yibiao YANG, Yixin YANG, Li ZHANG, Yuming
ZHOU, and ZHANG Lu. [n. d.]. Deep Learning-based Software Engineering:
Progress, Challenges, and Opportunities. SCIENCE CHINA Information Sciences
([n. d.]), –. https://doi.org/10.1007/s11432-023-4127-5

[15] ClassSplitter. 2023. ClassSplitter. https://github.com/ClassSplitter/ClassSplitter
[16] William W. Cohen. 1995. Fast Effective Rule Induction. In Machine Learning

Proceedings 1995, Armand Prieditis and Stuart Russell (Eds.). Morgan Kaufmann,
San Francisco (CA), 115–123. https://doi.org/10.1016/B978-1-55860-377-6.50023-
2

[17] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.
Introduction to Algorithms. MIT press.

[18] John Dawes. 2008. Do Data Characteristics Change According to the Number
of Scale Points Used? An Experiment using 5-point, 7-point and 10-point Scales.
International journal of market research 50, 1 (2008), 61–104.

[19] Andrea De Lucia, Rocco Oliveto, and Luigi Vorraro. 2008. Using Structural
and Semantic Metrics to Improve Class Cohesion. In 2008 IEEE International
Conference on Software Maintenance. 27–36. https://doi.org/10.1109/ICSM.2008.
4658051

[20] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by Latent Semantic Analysis. Journal of the
American society for information science 41, 6 (1990), 391–407.

[21] Chunhao Dong, Yanjie Jiang, Nan Niu, Yuxia Zhang, and Hui Liu. 2024.
Context-Aware Name Recommendation for Field Renaming. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering (Lisbon,
Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA,
Article 235, 13 pages. https://doi.org/10.1145/3597503.3639195

[22] Marios Fokaefs, Nikolaos Tsantalis, Alexander Chatzigeorgiou, and Jorg Sander.
2009. Decomposing Object-Oriented Class Modules using An Agglomerative
Clustering Technique. In 2009 IEEE International Conference on Software Mainte-
nance. IEEE, 93–101.

[23] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
2011. Jdeodorant: Identification and Application of Extract Class Refactorings.
In Proceedings of the 33rd International Conference on Software Engineering. 1037–
1039.

[24] Francesca Arcelli Fontana and Marco Zanoni. 2017. Code Smell Severity Classifi-
cation using Machine Learning Techniques. Knowledge-Based Systems 128 (2017),
43–58.

[25] G. Gui and P. D. Scott. 2006. Coupling and Cohesion Measures for Evaluation
of Component Reusability. In Proceedings of the 2006 International Workshop
on Mining Software Repositories (Shanghai, China) (MSR ’06). Association for
Computing Machinery, New York, NY, USA, 18–21. https://doi.org/10.1145/
1137983.1137989

[26] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet Challenge: Evaluating the state of Semantic
Code Search. arXiv preprint arXiv:1909.09436 (2019).

[27] Tahmim Jeba, Tarek Mahmuda, Pritom S Akashb, and Nadia Naharb. 2020. God
Class Refactoring Recommendation and Extraction using Context Based Group-
ing. (2020).

[28] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui.
2009. A Bayesian Approach for the Detection of Code and Ddesign Smells. In
2009 Ninth International Conference on Quality Software. IEEE, 305–314.

[29] Foutse Khomh, Stephane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui.
2011. BDTEX: A GQM-based Bayesian Approach for the Detection of Antipat-
terns. Journal of Systems and Software 84, 4 (2011), 559–572.

[30] Hui Liu, Jiahao Jin, Zhifeng Xu, Yanzhen Zou, Yifan Bu, and Lu Zhang. 2021. Deep
Learning Based Code Smell Detection. IEEE Transactions on Software Engineering
47, 9 (2021), 1811–1837. https://doi.org/10.1109/TSE.2019.2936376

[31] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané, Yann-Gaël
Guéhéneuc, and Esma Aimeur. 2012. Smurf: A Svm-based Incremental Anti-
pattern Detection Approach. In 2012 19th Working Conference on Reverse Engi-
neering. IEEE, 466–475.

[32] Radu Marinescu. 2004. Detection Strategies: Metrics-based Rules for Detecting
Design Flaws. In 20th IEEE International Conference on Software Maintenance,
2004. Proceedings. IEEE, 350–359.

[33] Robert Cecil Martin. 2003. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall PTR.

[34] Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring. IEEE
Transactions on software engineering 30, 2 (2004), 126–139.

[35] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith B. Hall,
Daniel Cer, and Yinfei Yang (Eds.). 2022. Sentence-T5: Scaling up Sentence Encoder
from Pre-trained Text-to-Text Transfer Transformer. https://aclanthology.org/2022.
findings-acl.146/

[36] William F Opdyke. 1992. Refactoring Object-Oriented Frameworks. University of
Illinois at Urbana-Champaign.

[37] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. 2014. Mining Version Histories for Detecting
Code Smells. IEEE Transactions on Software Engineering 41, 5 (2014), 462–489.

[38] Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy
Zaidman. 2016. A Textual-based Technique for Smell Detection. In 2016 IEEE
24th international conference on program comprehension (ICPC). IEEE, 1–10.

[39] José Pereira dos Reis, Fernando Brito e Abreu, Glauco de Figueiredo Carneiro,
and Craig Anslow. 2022. Code Smells Detection and Visualization: A Systematic
Literature Review. Archives of Computational Methods in Engineering 29, 1 (2022),
47–94.

[40] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence Embeddings
using Siamese Bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[41] İbrahim Şanlıalp, Muhammed Maruf Öztürk, and Tuncay Yiğit. 2022. Energy
Efficiency Analysis of Code Refactoring Techniques for Green and Sustainable
Software in Portable Devices. Electronics 11, 3 (2022), 442.

[42] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis. 2021.
Code Smell Detection by Deep Direct-learning and Transfer-learning. Journal of
Systems and Software 176 (2021), 110936.

[43] Frank Simon, Frank Steinbruckner, and Claus Lewerentz. 2001. Metrics based
Refactoring. In Proceedings fifth european conference on software maintenance and
reengineering. IEEE, 30–38.

[44] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of Move
Method Refactoring Opportunities. IEEE Transactions on Software Engineering
35, 3 (2009), 347–367.

[45] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner
2.0. IEEE Transactions on Software Engineering 48, 3 (2022), 930–950. https:
//doi.org/10.1109/TSE.2020.3007722

[46] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A Survey of
Transfer Learning. Journal of Big data 3, 1 (2016), 1–40.

[47] Zhihua Wen and V. Tzerpos. 2004. An Effectiveness Measure for Software Clus-
tering Algorithms. In Proceedings. 12th IEEE International Workshop on Program
Comprehension, 2004. 194–203. https://doi.org/10.1109/WPC.2004.1311061

140

https://doi.org/10.5220/0007743804270433
https://doi.org/10.5220/0007743804270433
https://github.com/ant-media/Ant-Media-Server
https://github.com/ant-media/Ant-Media-Server
https://doi.org/10.1109/FOSE.2007.27
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1007/s11432-023-4127-5
https://github.com/ClassSplitter/ClassSplitter
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1109/ICSM.2008.4658051
https://doi.org/10.1109/ICSM.2008.4658051
https://doi.org/10.1145/3597503.3639195
https://doi.org/10.1145/1137983.1137989
https://doi.org/10.1145/1137983.1137989
https://doi.org/10.1109/TSE.2019.2936376
https://aclanthology.org/2022.findings-acl.146/
https://aclanthology.org/2022.findings-acl.146/
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/WPC.2004.1311061

