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Abstract—Software developers and maintainers frequently
conduct software refactorings to improve software quality. Iden-
tifying the conducted software refactorings may significantly
facilitate the comprehension of software evolution, and thus
facilitate software maintenance and evolution. Besides that,
the identified refactorings are also valuable for data-driven
approaches in software refactoring. To this end, researchers have
proposed a few approaches to identifying software refactorings
automatically. However, the performance (especially precision) of
such approaches deserves substantial improvement. To this end,
in this paper, we propose a novel refactoring detection approach,
called REEXTRACTOR+. At the heart of REEXTRACTOR+ is a
reference-based entity matching algorithm that matches coarse-
grained code entities (e.g., classes and methods) between two suc-
cessive versions, and a context-aware statement matching algo-
rithm that matches statements within a pair of matched methods.
We evaluated REEXTRACTOR+ on a benchmark consisting of
400 commits from 20 real-world projects. The evaluation results
suggested that REEXTRACTOR+ significantly outperformed the
state of the art in refactoring detection, reducing the number
of false positives by 57.4% and improving recall by 18.4%.
We also evaluated the performance of the proposed matching
algorithms that serve as the cornerstone of refactoring detection.
The evaluation results suggested that the proposed algorithms
excel in matching code entities, substantially reducing the number
of mistakes (false positives plus false negatives) by 67 % compared
to the state-of-the-art approaches.

Index Terms—Software Refactoring, History, Detection, Entity
Matching, Software Evolution

I. INTRODUCTION

OFTWARE refactoring is to improve software quality

by changing the internal structure of a software sys-
tem whereas its external behaviors are kept intact [1], [2].
The primary goal of software refactoring is to improve the
readability and maintainability of software applications [3]—
[6]. Various software refactorings, like move methods, extract
classes, and rename variables, have been proposed and imple-
mented [7]-[9]. Most of the mainstream IDEs, e.g., Eclipse,
IntelliJ IDEA, and Visual Studio, have provided automated or
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semi-automated tool support for various software refactorings.
According to the empirical study conducted by Golubev et
al. [10], 40.6% of the developers conduct software refactorings
every day.

For various reasons, it is desirable to detect software refac-
torings conducted on real-world software applications [11].
First, identifying software refactorings can assist develop-
ers and maintainers in understanding the evolution of given
software applications [5], [12]. On one side, distinguishing
refactorings from other changes should explain the changes in-
volved in refactorings well and prevent misinterpretations dur-
ing code reviews. Such insights are particularly beneficial in
large collaborative projects where understanding the rationale
behind changes is essential for maintaining consistency and
code quality. On the other side, identifying refactorings (like
renamings) in frameworks and APIs also facilitates (potentially
automated) adaptions of their clients [13]. For example, when
a public API method is renamed, clients that depend on this
component need to adapt their code accordingly. Manually
tracking such changes can be error-prone and time-consuming.
By identifying refactorings, automated tools can detect and
suggest necessary adaptations in client code, thus reducing
the potential risks associated with outdated method calls.

Second, the identified refactorings are valuable for data-
driven approaches in software refactoring [14]. With the sig-
nificant advances in data mining and deep learning, data-driven
approaches for refactoring recommendations are becoming
increasingly prevalent [15]-[17]. However, these approaches
heavily rely on large-scale and high-quality training data [18].
The refactoring histories discovered from real-world software
applications are thus highly desirable [19]. By building a com-
prehensive dataset of refactorings, deep learning models can be
trained to recognize common patterns, optimize code structure,
and reduce technical debt. Such deep learning-based models
not only assist developers in making informed decisions about
when and where to refactor code, but also provide valuable
insights into best practices for code maintenance.

Third, refactoring-related approaches, e.g., code smell de-
tection [20], [21] and refactoring solution recommenda-
tion [22], [23], require high-quality testing data for com-
prehensive evaluation. Refactorings that have actually been
conducted in real-world applications, along with the corre-
sponding source code before and after the changes, serve as
perfect testing data for such approaches [24]-[26]. By iden-
tifying refactorings accurately, developers can evaluate these
approaches rigorously in real-world scenarios, validating their
effectiveness and uncovering potential limitations. Moreover,
these evaluations provide valuable insights into the strengths



and weaknesses of these approaches, which can be used to
refine them and improve the reliability of the suggestions
provided to developers.

However, it is challenging to discover software refac-
torings from the complex evolution of software applica-
tions [27]. Manual discovery of refactorings could be both
time-consuming and challenging [28] because changes in non-
trivial software applications are often enormous, and such
changes (rarely well-documented) are hard to understand [29].
To this end, a few approaches have been proposed to automate
the detection of software refactorings [11], [30]-[34]. Such
approaches first leverage a matching algorithm to map code
entities before refactoring to entities after refactoring. With the
result of entity mappings, they leverage a set of heuristic-based
rules to identify software refactorings. For example, if method
my in the old version (i.e., before refactoring) matches method
my, in the new version (i.e., after refactoring), and they are of
different names, a refactoring detection approach would report
a rename method refactoring, suggesting that the method has
been renamed from m,.name to my.name. Such automated
approaches have been widely used to detect refactorings,
which makes it possible to build large-scale high-quality
refactoring datasets. However, as suggested by the evaluation
results in Section III-C, the performance (especially precision)
of such approaches deserves substantial improvement.

To this end, in this paper, we present a novel approach
(called REEXTRACTOR+) to detect software refactorings. The
keys to the approach are two matching algorithms. The
first one is a reference-based entity matching algorithm that
matches coarse-grained code entities, such as classes and
methods, between two successive versions. The entity match-
ing algorithm takes full advantage of the qualified names,
implementations, and references of code entities. Among them,
the references of an entity are other entities that access it by
method call, field access, or class instantiation. The references
can effectively distinguish whether two similar code entities
are matched or not and thus assist in understanding how code
entities evolve. The other key algorithm is a context-aware
statement matching algorithm that matches fine-grained code
entities (i.e., statements) between the pairs of matched meth-
ods. The statement matching algorithm exploits the contexts
of the to-be-matched statements (i.e., other statements around
them within the innermost enclosing block).

This paper is an expanded version of the conference pa-
per [35] where we proposed a reference-based entity matching
algorithm to match coarse-grained code entities between two
successive versions. Compared to the conference version, in
this paper, we make the following expansion:

e We propose a context-aware statement matching algo-
rithm that exploits the contexts of the to-be-matched
statements to facilitate statement matching.

o We present a refactoring detection approach that can
detect 28 categories of refactorings covering both high-
level and low-level refactorings.

e We construct a new dataset for refactoring detection
(called ref-Dataset), which increases the dataset size by
104% and is validated by multiple developers.

repository: ~ E:jrefactoring-toy-example

commitiD:  0bb0526b70870d57cbacfcc8eda73d6adce5879

filePath: srcjorg/animals/Dogjava

package org.animals; package org.animals;

public class Dog { public class Dog {

return this.age;
} }

return this.age;

- public void bark() {
System.out.printin("ruff*);

+  public void barkBark() {
System.out.printin("ruff*);

System.out.printin("ruff*);

takeABreath();

System.out.printin("ruff");
takeABreath();

} }

} }

Refactorings:

Type: RENAME_METHOD
Description: Rename Method public bark() : void renamed to public barkBark() : void in class org.animals.Dog

V' details

leftsideLocation:
filePath: src/orgfanimals/Dog java
startLine: 11
endLine: 18
codeEntity: public bark() : void

rightsideLocation:
filePath: src/org/animals/Dog.java
startLine: 11
endLine: 18
codeEntity: public barkBark() : void

Fig. 1. Visualization of refactorings identified by REEXTRACTOR+

o Our evaluation on the dataset demonstrates the effective-
ness of our approach against the baseline approach.

« We develop a web application to visualize the refactor-
ings identified by our approach, including the repository,
commit ID, detailed diffs for each commit, and the
corresponding refactoring list.

A concrete example is presented in Fig. 1. When a developer
inputs a Java project repository and a commit ID into the
web application, these parameters are sent to the backend for
refactoring detection. Upon receiving the request, the backend
is responsible for analyzing the code changes associated with
the given repository and commit ID to identify any refactorings
that have been conducted. Once the backend has completed
the analysis, it generates a comprehensive report detailing the
identified refactorings. The result is then sent back to the
web application, which presents it to the user clearly and
intuitively. The user interface is designed to visually present
the identified refactorings, allowing the developer to review
and understand the changes effortlessly. The visualization
presents detailed information such as the type and description
of each refactoring, as well as the affected code entities.
The detailed representation provides valuable insights into
the changes, facilitating the understanding of the refactorings
within the commit.

The rest of the paper is structured as follows. Section II
outlines the overall workflow of REEXTRACTOR+ and intro-
duces the matching algorithms that serve as the cornerstone of
refactoring detection. Section III evaluates the performance of
our approach in comparison to the selected baseline approach.
Section IV delves into the threats to validity and limitations of
REEXTRACTOR+. Section V provides an overview of related
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Fig. 2. Overview of REEXTRACTOR+

research on refactoring detection and entity matching. Finally,
Section VI summarizes the paper.

II. APPROACH
A. Overview

An overview of the proposed approach is presented in Fig. 2.
The approach takes as input a Java project repository and
a commit ID, and returns a list of refactorings discovered
from the given commit. The overall workflow is explained
as follows:

o First, it retrieves all to-be-matched code entities, and
distinguishes intact entities (noted as ZntactE) that have
not been changed by the given commit. It also leverages
a qualified name-based matching algorithm to match
entities, and the resulting mapping is noted as M.

« Second, it leverages an implementation-based matching
algorithm to initially match entities, and the resulting
initial mapping is noted as M’.

« Third, it leverages a reference-based iterative matching
algorithm to match (or re-match) entities (excepted for
intact entities in ZntactE and matched entities in M).

« Fourth, for a pair of matched methods/initializers, it lever-
ages a text-based matching algorithm to identify common
statements (noted as ZntactS) and match statements that
become textually identical after replacements (noted as
S).

« Fifth, it leverages a context-aware iterative matching
algorithm to match (or re-match) statements (excepted
for intact statements in ZntactS and matched statements
in S).

« Sixth, it leverages a set of refactoring heuristics to
identify refactorings based on the mappings built in the
preceding steps.

Notably, our approach employs a top-down strategy to
match code entities between two successive versions. Specifi-
cally, we first match coarse-grained code entities (e.g., classes
and methods), followed by fine-grained code entities (e.g.,

statements). On one side, coarse-grained code entities can take
full advantage of their references and thus can be matched
more accurately than fine-grained code entities. On the other
side, statement mappings should be performed within the pairs
of already matched methods/initializers to reduce the chances
of erroneous matches. Key steps of the proposed approach are
explained in detail in the following sections.

B. Qualified Name-based Matching

Given a Java project repository and a commit ID, we retrieve
source code files that have been added, removed, or modified
by the commit. Notably, entity matching algorithms usually
ignore intact files and non-source code files [33], [34]. All
newly added files are added to set AD, and all removed files
are added to set RD. The modified files are recorded by a
set MD. Each item in MD represents a pair of documents
<d,d'> where d and d’ represent the old version (V,,) and the
new version (V,,11) of the same document that was modified
by the given commit.

From each tuple <d,d'’> € MD, we retrieve all code
entities declared in d and d’, respectively. All entities declared
in d are added to a set (noted as oldFE), and entities declared
in d’ are added to another set (noted as newF). Notably, in
this step, the proposed approach only matches coarse-grained
code entities, i.e., methods, fields, classes, interfaces, enums,
@interface (annotation types), initializers, enum constants, and
annotation members.

We identify intact entities in d by matching entities in oldE
against entities in newE. Entity oe € oldE matches entity
ne € newkE if and only if:

o oe and ne are of the same entity type;
« oe and ne share identical fully qualified name; and
« oe and ne share identical implementation.

The implementation of an entity depends on its entity type.
For example, the implementation of a method includes the
signature and its method body whereas the implementation
of a field includes its complete declaration (including its



initialization). We retrieve the implementation of an entity by
using Eclipse JDT ASTNode.toString () [36] on it. The
comparison of entities’ implementations is a pure text-based
comparison and thus any changes in the implementation will
prevent the matching of entities in this step. If oe and ne
match, we add a tuple <oe,ne> to set ZntactE, and remove
oe from oldE and ne from newkE.

For renamed and moved documents, all entities within
the document (e.g., fields and methods) should be pair-
wise matched. To this end, we utilize Eclipse JGit
RenameDetector [37] to identify such documents and
then match the entities within them. Notably, to match such
entities, we lose the matching conditions: two entities match if
they share identical entity type and identical implementation,
regardless of their fully qualified names because renamed and
moved documents change the package names and class names.

For the remaining entities in oldE and newFE that we fail
to match in the preceding step, we try to match them again,
ignoring their implementations. That is, entity oe € oldE
matches entity ne € newE if and only if:

o oe and ne are of the same entity type;

o oe and ne share identical fully qualified name;

o oe and ne share the same signature if they are methods;
and

e oe and ne share the same data type if they are fields or
annotation members.

This matching step may help identify entities whose imple-
mentations have been modified by the given commit but their
identities (including fully qualified names, method signatures,
and data types) are kept intact. If oe and ne match, we add a
tuple <oe,ne> to set M, and remove oe from oldE and ne
from newkE.

C. Implementation-based Initial Matching

Entities to be matched are classified into two categories. The
first category is composed of code entities that cannot contain
other to-be-matched entities. For example, methods belong to
this category because the proposed approach does not match
code entities within a method (like parameters, variables, and
statements) in this step. The other category is composed of
code entities that have the potential to contain other to-be-
matched entities. For example, classes have the potential to
contain methods and fields that should be matched as well.
For the sake of simplicity, we call the two categories atomic
entities and compound entities, respectively.

All to-be-matched entities (except for intact entities in
IntactE and matched entities in M) in V,, and V,, 4 are noted
as 2bmFE, and 2bmE, ;, respectively. We initially match
such entities by Algorithm 1. For each entity oe € 2bmE,,
we compare it against each entity ne € 2bmFE, 1. If they
are of different entity types, they are deemed unmatched.
For example, we cannot map a field in the old version to
a method in the new version. If two atomic entities are of
the same entity type, on Line 5 in Algorithm 1, we compute
the implementation-based similarity (i.e., implSim(oe, ne))
between them and add a triple <oe, ne,implSim(oe, ne)>
to list £ (Line 7) if and only if:

Algorithm 1: Implementation-based Initial Matching
Input : 2bmkE, and 20mE, ;1
Output: M’

1 L+ 0O

2 foreach oe € 2bmE,, do

3 foreach ne € 2bmFE, 1 do

4 if oe.type == ne.type then

5 tmplSim(oe,ne) = compImplSim(oe, ne)
6 if implSim(oe,ne) > 0.5 then

7 ‘ L.add(<oe, ne, implSim(oe, ne)>)

8 end

9 end

10 end
11 end

12 sortBySim(£) // in descending order
13 return simBasedMatching(L)

14 Function simBasedMatching(L)

15 M—2, 0, N2

16 for int i = 0; i < L.length; i++ do

17 if L[i].oe ¢ O and L[i].ne ¢ N then
18 M .add(<L[i].oe, L]i].ne>)

19 0.add(L]i].oe)

20 N .add(L[i].ne)

21 end

22 end

23 return M’

24 end

« oc and ne are of the same entity type; and
o implSim(oe,ne) > 0.5 (i.e., more than half of their AST
nodes or sub-entities are common).

The triple suggests that oe and ne have the potential to be
matched. We compute the implementation-based similarity of
two atomic entities with dice coefficient [38] that is widely
used to measure the similarity between two Abstract Syntax
Trees (ASTs) [39]-[41]. The implementation-based similarity
is computed as follows:

implSim(ey, eq) = dice(ty, ts)
2 x |common(nodesy, nodess)|

|nodesy| + |nodess| > (D
where t; and t, are the ASTs associated with entities
e; and ey, respectively. nodes; and nodess denote the
AST nodes (including all inner nodes and leaf nodes ex-
cept for the root node) in ¢; and t5, respectively. Func-
tion common(nodesy,nodess) denotes the common nodes
between the two lists. Nodes nd; € mnodes; and nd; €
nodess represent a common node if they share the same node
type (i.e., nd;.getNodeType() == nd;.getNodeType())
and equal value (ie., nd;.toString() == nd;.toString()).
An example of initial matching between two atomic entities
is presented in Fig. 3. We extend the ASTVisitor and
override the previsit2 () method to traverse the AST in
a pre-order fashion and to store all AST nodes in a list.
The implementation similarity between the two methods is
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Fig. 3. Two sample Java methods with their corresponding ASTs. The leaf nodes are labeled as Node Type: Value. For readability reasons, the internal
nodes are labeled simply as Node Type. The number on the top-left corner of each label in this figure represents the traversal order.

0.71=2x12/(14+20), where the number of common nodes is
12, that is, all nodes are matched except for nodes (8) and @3
as well as nodes (9) and @9, which have different values, and
nodes @9 to 34, which are newly added. For nodes of the same
type used in different contexts, e.g., SimpleName, we match
such nodes based on their value, type, and their parent nodes’
type. As a result, a simple method call name would not match
a simple variable name. For complex AST nodes that contain
a body, e.g., ForStatement, we treat them as internal nodes
within the AST, and their bodies (represented as subtrees) are
handled in the same way as other nodes. Notably, we follow
GumTree [41] to measure the ratio of common AST nodes
and to handle such complex nodes.

We sort £ by implementation-based similarity in descending
order (Line 12). Function simBasedMatching (Lines 14-
24) matches atomic entities to maximize the similarity between
matched entities whereas each entity matches no more than
one entity.

The initial matching of compound entities is exactly the
same as the matching of atomic entities except that the
similarity of compound entities is computed as follows:

2 x |common(subE7, subEs)|
|subE4 | + |subEs| ’

where subE denotes all entities contained in e. For example, if
e is a class, subE is composed of all methods, fields, and inner
types (e.g., inner classes and inner interfaces) declared within
e. Function common(subE7, subFEy) denotes the common
entities within subFE; and subEs. The two entities e; € subF1
and ey € subF, represent a single common entity if and only
if e; and eo have been matched (or temporarily matched), i.e.,
<ei,ex> € (IntactE UM U M'). Because the similarity of
two compound entities as defined in Equation 2 depends on
the matching of their sub-entities, the initial matching should
take a bottom-up strategy.

2)

implSim(ey, ez) =

D. Reference-based Iterative Matching

As suggested by the overview in Fig. 2, reference-based
iterative matching is a loop containing two iterative steps, i.e.,
computation of reference-based similarity and reference-based

matching. The key of this step is to retrieve the references to
code entities between the two versions. A Reference refers
to instances where a code entity e is used by other entities
of the software project, e.g., method call, field access, class
instantiation, etc. For example, a method call is an entity e
(such as a method or a field) calling a method m. In this
example, e is considered one of the references of m. To
retrieve the references of entities, we build an Entity Reference
Graph (ERG) based on the syntax parsing. As discussed in
Section II-B, all added, removed, or modified source code
files have been retrieved and each file has been parsed into an
AST using Eclipse JDT. To illustrate the reference retrieval,
we leverage method call as an example to explain how the
ERG is built. The overall workflow for reference retrieval is
described as follows:

« First, for each code entity caller in the added, removed,
and modified file, we create a corresponding node in the
ERG. After all nodes are created, the graph contains only
N nodes without any edges, where N represents the total
number of all code entities across these files. Each node
uniquely represents a code entity.

e Second, we extend the ASTVisitor and override
visit () method to capture all AST nodes associated
with the method call (such as MethodInvocation, Su-
perMethodInvocation, ExpressionMethodReference, etc.)
within each caller.

e Third, we leverage resolveMethodBinding/()
method to obtain binding information for each callee
method, which includes its method signature and the
enclosing class to which it belongs. Consequently, a pair
of reference relations <callee, caller> can be uniquely
identified through binding information, where caller is
one of the references of callee.

o Fourth, if a callee node comes from source code rather
than third-party libraries (such as a JAR file), we build the
reference relation <callee, caller> into the ERG. That
is, a directed edge from callee to caller is added to the
graph. Otherwise, no edge is added because these nodes
are excluded from the ERG, as will be discussed later in
Section IV.



Algorithm 2: Reference-based Iterative Matching

Input : 2bmkFE,, 2bmE, 1, IntactE, M, and M’
Output: M’

1 while true do

2 L+ O

3 foreach e¢; € 2bmFE,, do

4 foreach e; € 2bmE, 1 do

5 if type-compatible(e;, e2) then

6 sim(ey,e2) =

compSim(ey, ea, IntactE, M, M’)

7 if sim(e1,e2) > 0.5 then

8 ‘ L.add(<eq,eq, sim(ey, e3)>)

9 end

10 end

11 end

12 end

13 sortBySim(£) // in descending order
14 M" «+ simBasedMatching(L)

15 if M’ == M" then

16 | return M’

17 else

|| M e M

19 end
20 end

« Fifth, we repeat the preceding steps until all reference
relations for code entities have been resolved, i.e., the
ERG is built completely, where each directed edge from
code entity e; to code entity e, represents a reference
relation between them.

Notably, if an entity e is referenced by nodes in unchanged
source code files in two versions, such reference relations are
not retrieved. As a result, it is efficient and rapid to build the
ERG only from added, removed, and modified files. Although
the ERG may lose some reference relations from unchanged
files, it does not impact any performance of our matching
algorithm. This is because entities with identical qualified
names and signatures are already matched in the qualified
name-based matching, and any reference relations involving
entities with changed qualified names and/or signatures do not
exist in unchanged files. The details will also be discussed later
in Section IV.

In the following sections, we explain the loop (iteration)
first, and then the two key steps within the loop.

1) Iterative Matching: The proposed approach leverages
Algorithm 2 to conduct the reference-based iterative matching.
In each iteration, the approach first (Lines 2-12) computes/
updates the reference-based similarity based on the temporary
mapping (i.e., M) generated by the previous iteration. With
the updated similarity, the approach (Lines 13-19) rematches
temporarily matched entities (as well as unmatched ones), and
updates M’ if it is necessary. The algorithm terminates when
the mapping M’ survives the latest iteration, i.e., the iteration
does not bring any changes to M’ (i.e., M’ == M").

2) Computation of Reference-based Similarity: For each
pair of entities e; € 2bmFE,, and e € 2bmFE,, 1, we compute

their reference similarity as follows:

2 x |common(callersy, callerss)|

» )

refSimesez) = |callersy| + |callersa|
where callers denotes code entities that access e. Function
common(callersy, callerss) denotes entities accessing both
e and ep. Notably, e; and e; represent an entity accessing
both e; and ey if and only if e; € callers;, e; € callers,,
and e; has been matched (or initially matched) to ¢; (i.e.,
<ej,e;> € (IntactE U M UM')).

The reference-based similarity between e; and e; is the
average of their reference similarity and implementation-based
similarity:
refSim(ey, ez) +implSim(ey, es) 4

. ©

3) Reference-based Matching: To match entities according
to the reference-based similarity defined in Equation 4, Algo-
rithm 2 (Lines 3-12) computes the reference-based similarity
between each type-compatible entity pair <ei,es> (Line 5).
If two entities are of the same entity type, they are surely
type-compatible. Following Tsantalis et al. [33], [34], we
also take classes, interfaces, and enums as type-compatible
to each other because developers often switch among such
types, e.g., changing an interface into a class. If we do not
try to match interfaces against classes, we can never identify
such refactorings. The same is true for enums.

If the reference-based similarity between e; and e5 is greater
than or equal to a minimum threshold (0.5), we add the item
<ej,eq, sim(ey, ez)> to list L (Line 8), suggesting that they
have the potential to match each other. The setting of the
threshold is inspired by the matching of intact entities in
Section II-B. For a pair of intact entities, they naturally match
each other even if their references are entirely different, such as
requirement changes or bug fixes. In this case, the reference-
based similarity defined by Equation 4 between two intact
entities is 0.5, and thus we set this value as the minimum
threshold for potential matching between any two entities.
We sort items in £ by their reference-based similarity in
descending order (Line 13). In case two items have equivalent
reference-based similarity, we sort them according to the
name-based similarity in descending order. The name-based
similarity between e; and es is the n-gram similarity [42] of
their fully qualified names:

sim(er,eq) =

2x [common(2g(qn1), 2g(qn2))|
12g(qn1)| + [2g(gn2))|

where ¢n is the fully qualified name of e, and 2g(gn)
denotes the list of 2-grams within gn. After sorting L,
the proposed approach rematches entities by using function
simBasedMatching on Line 14. Notably, this function has
been defined in Algorithm 1.

» (9

nameSim(ey, ea) =

E. Text-based Matching

Given a pair of methods <m,m’>, we retrieve all state-
ments declared in m and m/, respectively. All statements
declared in m are added into a set (noted as Statementsyy),
and all statements declared in m’ are added into another



set (noted as Statementsy;s). Consequently, the text-based
matching is to match elements in Statements); to state-
ments in Statementsy; Notably, statements to be matched
are classified into two categories: compound statements and
atomic statements. Compound statements are statements that
can contain other statements whereas atomic statements cannot
contain other compound or atomic statements. For example,
for-loop statements belong to compound statements because
they can contain other statements within their loop bodies.
In contrast, variable declaration statements belong to atomic
statements because they generally do not contain any other
statements.

1) Pre-Processing: Extract method and inline method
refactorings may significantly influence the text-based match-
ing between the two methods. Therefore, the pre-processing
of methods is essential for effective text-based statement
matching. The extract method refactoring involves moving a
subset of statements from method m to a newly added method
(i.e., the extracted method m™), and introducing a method
invocation to m™ in the refactored method m’'. The statements
within the extracted method should also be included as part
of the statement matching between m and m’. That is, all
statements in ™ should be added to Statementsy; without
changing their original structures and nesting relationships.
Notably, a method m™ is deemed extracted from m (whose
revised version is m') if they satisfy all of the following
conditions:

e m™ is a newly added method in the new version;

o m' calls m* in the new version;

o One or several statements in m fail to match statements

in m’ at the granularity of code lines; and

o {common(AST(m) — AST(m'), AST(m™*))} # &,

where AST(m) represents the AST nodes of m.

The inline method refactoring, which involves replacing a
method invocation with the body of the invoked method, is
pre-processed in a similar but reversed way: All statements
in the inlined method are added to Statementsy; without
changing their original structures and nesting relationships.

2) Statement Matching: We first identify common state-
ments between Statementsy; and Statementsy; according
to the texts of the statements. The identification is composed
of two rounds. In the first round, two statements match if
and only if they share identical statement type, identical text,
and identical nesting depth (within their enclosing methods).
Matched statements are added to ZntactS. In the second
round, we further match the remaining statements (i.e., state-
ments that have not yet been matched in the first step) by
losing the matching conditions: two statements match if they
share identical statement type and identical text, regardless of
their nesting depth. Such matched statements are also added
to ZntactS. Note that multiple matches within a method are
ranked according to the lexical similarity of their innermost
enclosing blocks.

For the remaining statements in Statementsys and
Statementsy; that are not matched in the preceding step,
we attempt to match them again using heuristics-based rules.
Specifically, two statements os € Statementsy; and rs €
Statementsy match if and only if they become textually

identical after performing any (or a combination) of the
following replacements:

« Renaming (Rule 1): It is to replace old entity names (in
0s) with new names. Two statements may fail to match
due to renaming refactorings. If reversing the renaming
refactorings could make statement os € Statementss
and statement 7s € Statements),s lexically identical, we
add the tuple <os,rs> to set S, and remove os from
Statements); and rs from Statements; .

o Argumentization (Rule 2): If s comes from an extracted
method (m™) and contains parameters of the method (i.e.,
m™), we should replace the parameters in rs with their
corresponding argument values before lexical matching.
For statements derived from inlined methods, similar
replacement (i.e., replacing parameters with arguments)
should be conducted before lexical comparison as well.
Notably, this heuristics has previously been employed by
Tsantalis et al. [33], [34].

o Variablization (Rule 3): It is to replace variable names
with variables’ initialization values. For example, ex-
tract variable refactorings may extract expressions from
statements as a local variable, resulting in the same
statements with non-identical text in the two versions. For
inline variable refactorings, similar replacement should
be conducted before lexical comparison as well. By the
variablization, we may turn them identical again. Besides,
variablization can handle the same statements with non-
identical text due to variable renaming.

Notably, if two to-be-matched statements have a higher textual
similarity (measured by Levenshtein distance [43]) after a
replacement, we perform this replacement. Otherwise, we do
not perform this replacement and turn to the next replacement.
All matched statements are added to S.

F. Context-aware Iterative Matching

As suggested by the overview in Fig. 2, context-aware
iterative matching is a loop containing two iterative steps, i.e.,
computation of context-aware similarity and context-aware
matching. We explain the loop (iteration) first, and then the
two key steps within the loop.

1) Iterative Matching: It should be noted that the context-
aware similarity depends on the mapping of statements. Mean-
while, the latter depends on the context-aware similarity, as
well. To resolve their circular dependency, we employ the
iterative matching tactic as specified in Algorithm 3 (Lines 1-
9). On the first run of function ctxBasedMatching (Line
1), S’ is empty and thus we take @ as the last argument.
After the running, S’ contains tuples of temporarily matched
statements. We then keep running ctxBasedMatching
(Line 3) until the mapping S’ becomes stable (i.e., S’ == S”).

2) Computation of Context-aware Similarity: The key to
context-aware matching is the computation of context-aware
similarity between statements (Line 15 in Algorithm 3). All
to-be-matched statements (except for intact statements in
IntactS and matched statements in S) from m and m'
are noted as 2bmS and 2bmS’, respectively. For a pair of
statements s1 € 2bmS and sy € 2bm.S’, their context-aware



Algorithm 3: Context-aware Iterative Matching
Input : 2bmS, 2bmS’, IntactS, and S
Output: S’
18«
ctxBasedMatching(2bmsS, 2bmS’, IntactS, S, &)
2 while frue do

3 S+
ctxBasedMatching(2bmsS, 2bmS’, IntactS,S,S’)
4 if S’ == S” then
5 | return S’
6 else
7| s s
8 end
9 end

10 Function

ctxBasedMatching (2bmS, 2bmS’, IntactS,S,S’)
1 L+ O
12 foreach s; € 2bmS do

13 foreach so € 2bm.S’ do

14 if type—-compatible(sy, s2) then

15 sim(s1, $2) =
compSim(sy, s9, IntactS,S,S’)

16 if sim(s1,s2) > 0.5 then

17 ‘ L.add(<s1, s2, sim(s1, s2)>)

18 end

19 end

20 end

21 end

22 sortBySim(£) // in descending order

23 S 3,0+, R+
24 for int i = 0; i < L.length; i++ do

25 if L[i].s1 ¢ O and L[i].s2 ¢ R then
26 S'.add(<L[i].s1, L[i].s2>)

27 0.add(L]i].s1)

28 R.add(L]i].s2)

29 end

30 end

31 return S’

32 end

similarity depends on their similarity in contexts, texts, and
statement types. To this end, we first compute the context
similarity between two statements as follows:

2 X |[common(ctzy, ctzs)]

txSi =
ctzSimfer, €2) |ctay| + |ctxs|

common(ctxy, ctre) = {<s;,8;> € Matched | s; € ctzy
A sj € ctza}
Matched = IntactS U S, (6)

where ctx is the contexts of statement s, including all state-
ments (except for s) within the innermost enclosing block of
s. The set Matched indicates all matched statement pairs,
including ZntactS (unchanged common statements matched
in Section II-E), & (matched statements that are textually
identical after replacements), and S’ (statements that have

been matched so far). Function common(ctz1, ctzo) denotes
the common statements between the contexts of s; and the
contexts of ss. Notably, if the innermost enclosing block of a
to-be-matched statement contains only the statement itself (i.e.,
without any context), the matching of such blocks depends on
their parent mappings: if their parent statements are matched,
the enclosing blocks are also considered matched. Once the
enclosing blocks are confirmed as matched, the standalone
statements within the block are matched based solely on
text similarity. However, if the blocks are unmatched, the
enclosed standalone statements contained within them are
deemed unmatched.

Second, we compute the text similarity between the two
statements. For two atomic statements, we also leverage the
widely-used dice coefficient [38] to measure their text similar-
ity tatSim(s1, s2) as follows:

2 X |common(nodesy, nodess)|

(D

tatSim(s1, s2) = |nodes:| 4 [nodes;|
where ¢; and ty are the ASTs associated with state-
ments s; and sg, respectively. nodes; and nodess repre-
sent the AST nodes in s; and s», respectively. Function
common(nodesy, nodess) represents the common nodes be-
tween the two lists. Nodes nd; € nodes; and nd; €
nodess are considered common if they share the same node
type (i.e., nd;.getNodeType() == nd;.getNodeType())
and equal value (i.e., nd;.toString() == nd;.toString()).
tetSim(s1, s2) measures how likely the AST nodes associated
with statements s; and s, are common (overlapping). The
more likely they are, the more similar the statements (i.e., $1
and s5) are.

For two compound statements, we compute their text simi-
larity as follows:

2 x |common(subSy, subSs)|
|subS1| + |subSs| ’

taetSim(sy, s2) = (8)
where subS represents all statements within s. The com-
mon statements of two lists (i.e., common(subSy, subSs))
should be computed as defined in Equation 6, that is
common(subSt, subSs) = {< s;,s; > € Matched | s; €
subS1 A s; € subSy}. The text similarity between two
compound statements measures how likely their fine-grained
inner statements match. The final context-aware similarity
between two statements s; and ss is the average of their
context similarity and text similarity:

ctxSim(sy, s2) + tztSim(s1, s2)
2

3) Context-aware Matching: In the preceding paragraphs,
we have specified how to compute the similarity between to-
be-matched statements, i.e., all statements except for those
identified in Section II-E as unchanged common statements
and already matched statements. We try to match such state-
ments as specified by function ctxBasedMatching in
Algorithm 3 (Lines 10-32).

For each to-be-matched statement os € 2bm.S, we compute
its similarity with each to-be-matched statement rs € 2bm.S’
(Lines 12-15) if they are type-compatible (Line 14). Tsantalis

(€))

sim(sy, s2) =



et al. [33], [34] introduced a novel technique called abstraction
to facilitate the matching of statements by checking whether
their expressions are identical or become identical through the
replacements of AST nodes. Following them, we also take
expression statements [44], return statements [45], variable
declaration statements [46], and assignments [47] as type com-
patible and take loop statements (including for statements [48],
enhanced for statements [49], while statements [50], and do
statements [51]) as type-compatible.

If their similarity is greater than or equal to a minimum
threshold (0.5), we suppose that they have the potential to
match, and thus we add the tuple <os,rs,sim(os,rs)> to
list £ (Line 18). The setting of the threshold is inspired by
the matching of common statements in Section II-E. For a
pair of common statements, even if their contexts are entirely
different, they are considered to match each other because
the second round of text-based matching ignores their nesting
depth. For example, developers often restrict the scope of
variables by moving them from method-level to block-level,
and thus limiting their visibility and lifecycle. In this case,
the context-aware similarity defined by Equation 9 between
such statements is 0.5 because their contexts are completely
different. Thus we set this value as the minimum threshold
for potential matching between any two statements. After the
enumeration (Lines 12-21), we sort the tuples in £ (Line 22)
so that tuples with greater similarities are ranked on the top.

After the ranking of £, we pick up the first tuple in £ and
add the tuple as a potential matching to S’ (Line 26). We
also add the associated statements in the tuple (i.e., £.0s and
L.rs) to empty sets O and R, respectively. These two sets
are employed to record which statements (from the original
method m and the improved version m/, respectively) have
already been temporarily matched. We then go to the next
tuple in £, and validate if statements in the tuple have not
yet been matched. Only if neither of the statements has been
matched, we add the tuple to S’. The iteration ends when all
tuples in £ have been checked. Tuples in S’ are returned as
the result of the context-aware statement matching.

G. Refactoring Detection

In the previous sections, we match code entities between
two successive versions and statements between matched state-
ments respectively. The mappings of entities and statements
are recorded with M and S respectively. All unmatched
entities and statements from the old version (i.e., removed
entities and statements) are stored in sets M~ and S, and all
unmatched entities and statements from the new version (i.e.,
added entities and statements) are stored in sets M™ and ST.
Based on the mappings, REEXTRACTOR+ identifies refactor-
ings according to a set of refactoring heuristics. Note that we
are not the first to identify refactorings by heuristics. Existing
refactoring detection tools, like REFACTORINGMINER [33],
[34], have already defined various heuristic rules to identify
different categories of refactorings. Consequently, for these
refactorings that have already been supported by existing tools,
we simply reuse their heuristics and re-implement them based
on our matching relations, as specified in Table I.

For example, given a pair of matched methods <m,, m},>
and a newly added method my, we could infer an extract
method refactoring if and only if:

e m, does not call m; in the old version;

o m/, calls m; in the new version;

o The containers (e.g., classes and interfaces) of m, and

m/, are matched; and

e The number of matched statements in m, and my is

greater than the number of unmatched statements in my,

For low-level refactorings, like extract variable and inline
variable, REFACTORINGMINER relies on the syntax-aware
replacements of AST nodes to infer such refactorings. In
contrast, our approach exploits the contexts of the to-be-
matched statements to obtain statement mappings. Therefore,
we cannot simply reuse heuristics for such refactorings. To this
end, we design two novel refactoring heuristics to infer extract
variable and inline variable refactorings, as presented in the
last two rows of Table 1. Given a pair of matched statements
<Sa,8h,> and a newly added variable declaration statement
sy, we could infer an extract variable refactoring if and only
if:

e v is a variable declared in sy;

e s/ contains the name of v; and

e S, contains the initializer of v or [common(AST (s,) —

AST(sl,), AST (v.1))| > 0.5, where AST (v.i) represents
the AST nodes corresponding to the initializer of v.

1II. EVALUATION

In this section, we evaluate the performance and efficiency
of the proposed approach REEXTRACTOR+ on real-world
projects. We also evaluate the proposed matching algorithms
that serve as the cornerstone of REEXTRACTOR+.

A. Research Questions

The evaluation investigates the following research questions:

« RQ1: Can REEXTRACTOR+ outperform the state of the

art in refactoring detection?

« RQ2: Can the proposed matching algorithms improve the

state of the art in entity matching?

« RQ3: How does the patch size influence the performance

of REEXTRACTOR+?

e RQ4: Is REEXTRACTOR+ efficient?

RQ1 concerns the performance of the proposed approach
and its comparison against the state of the art. To answer RQI,
we take REFACTORINGMINER! [34], [52] as the baseline.
Notably, RefactoringMiner represents the state of the art
in automated refactoring detection, and it is the only one
that supports the detection of both high-level refactorings
(e.g., move method) and low-level refactorings (e.g., extract
variable). RQ2 concerns whether the proposed matching al-
gorithms can improve the state of the art. To answer RQ?2,
we compare the proposed matching algorithms against the
matching algorithm employed by the state-of-the-art detection
approach REFACTORINGMINER. RQ3 concerns whether the

IThe latest version (release: 3.0.10, commit: 99dfbe4) of REFACTORING-
MINER was employed for comparison.



TABLE I
HEURISTICS FOR REFACTORING DETECTION

Refactoring Types

| Heuristics

Change Method Signature
meq to mp

I <mq,mp> M

@O mg.n # mp.n = RENAME METHOD (2 mq.t # mp.t = CHANGE RETURN TYPE

® <mgq.c,mp.c> ¢ M A —subType(mg.c,myp.c) A nsubType(mp.c, mq.c) = MOVE METHOD
subType(ma.c,mp.c) = PULL UP METHOD| [subType(my.c, maq.c) = PUSH DOWN METHOD]
ma.n # my.n = MOVE & RENAME METHOD|

Extract Method my, from mg

I <mgq,m,>€ MAmMy € MT A <mg.c,mp.c> € MA-calls(mg,mp) Acalls(ml,mpy) A
|M| > |Ur,|

Extract my from m, &
Move to my.c

3 <ma,my> € MAmMm € MT A <mg.c,mp.c> ¢ MA—calls(ma, mp) A calls(ml,mp) A
|M| > U, |

Inline Method my, to m/,

I <mg,m),>€ MAmMm € M~ A <ml.c,mp.c> € MAcalls(ma,mp) A ncalls(ml,my) A
|M| > [Ur,|

Move my, to ml,.c &
Inline to m/,

I <ma,m, > MAmMp € M~ A <ml.c,mp.c>¢ MAcalls(mg, mp) A ocalls(ml, mp) A
|M]| > |Ur, |

Change Field Signature
fa to fi

I <fa, fo>eM

® fan # fy.n = RENAME FIELD (@ fq.t # fp.t = CHANGE FIELD TYPE

® < fa-c, fo-c> ¢ M A —subType(fa-c, fp.¢) A “subType(fp.c, fa.c) = MOVE FIELD
subType(fa.c, fo.c) = PULL UP FIELD| [subType(fy.c, fa.c) = PUSH DOWN FIELD|
fa.n # fy.-n = MOVE & RENAME FIELD|

Change Class Signature
tdg to tdy

3 <tdg,tdy > € M
@ tdg.n # tdy.n = RENAME CLASS () tdq.t # tdyp.t = CHANGE TYPE DECLARATION KIND
@ <tdg.c,tdy.c> ¢ MV tda.p # tdy.p = MOVE CLASS  [tda.n # tdy.n = MOVE & RENAME CLASS|

Extract Class tdp from td,

3 <tdg,tdl, > € M Atd, € MT A =subType(td,, tdy) A ~subType(tdy, td’,) A
Jmove(ma, mp) | Mma € tda Amy, € tdy V Imove(fa, fo) | fa € tda A fp € tdp

Extract Superclass tdp from td,

3 <tdg,td,> € M Atd, € MT A subType(td.,,tdy) A JpullUp(ma,mp)|mae € tda Amy € tdy V

IpullUp(fa, fo) | fa € tda A fy, € tdy [isInterface(tdy) = EXTRACT INTERFACE

Extract Subclass td; from td,

3 <tdg,td!,> € M Atdy, € Mt A subType(tdy,td],) A IpushDown(ma, mp)|me € tda Amy € tdy V
JpushDown(fa, fo) | fa € tda A fp € tdp

Change Variable Signature
Vg 1O vy

3 < Sq,8,> € S,vq = variableDecl(sq) A v, = variableDecl(sp)
@ vq.n # vy.n = RENAME VARIABLE

@ vq.t # vp.t = CHANGE VARIABLE TYPE

Extract Variable v from s,

| 3<sa,sl,>€8As, € ST A(contains(sa,v.i) V|M|> |Ur, ,|) A contains(s),v.n)|v = var(sy)

Inline Variable v to s/,

| 3<sa,sl,>€8NAs, €S~ A(contains(s),v.i) V|M| > |Ur, ,|) A contains(sa,v.n)|v = var(sy)

subType(cq, cp) returns true if ¢, is a direct or indirect subclass of ¢; or if it implements interface cp
move(ma,myp) returns true if method m, moves to method my

calls method my
isInterface(td) return true if ¢d is an interface
the variable declaration for statement s

performance of REEXTRACTOR+ may be influenced by the
patch size. It is likely that the larger the patch (change)
is, the more challenging the refactoring detection will be.
By answering RQ3, we may validate this hypothesis. RQ4
concerns the efficiency of the proposed approach, i.e., whether
it works efficiently on large projects with large-scale patches.

B. Setup

1) Subjects: We evaluated our approach and the base-
line approach using two benchmarks. The first one is the
refactoring benchmark constructed by Tstantalis et al. [53].
However, the majority of the commits in this benchmark
are from 2015. Given the significant evolution in software
development practices over the past decade, it is necessary
to validate our approach against more recent commits. To this
end, we constructed a new refactoring benchmark tailored to
this purpose. We reused 20 popular Java projects that were
chosen by Grund et al. [54] as the subject projects. All of
the projects contain rich evolution histories and the number

calls(mg,my) returns true if method mg
move(fa, fp) returns true if method f, moves to method f

contains(s,v.n) returns true is statement s contains the name n of variable v var(s) return

of commits per project varies from 2,509 to 439,041 with a
median of 16,680 and a total of 844,605. They also cover a
range of domains, including code analysis, unit testing, search
engine, distribution framework, and web server. The diversity
may help reduce the potential bias in the evaluation.

2) Process: First, the refactoring benchmark was con-
structed by Tsantalis et al. using triangulation between multi-
ple refactoring tools and human experts [33], [34]. However,
the refactoring tool selected for this benchmark did not include
our approach. As a result, this benchmark may be biased
against our approach because it might overlook some commits
where our approach could identify refactorings but the baseline
approach failed to identify. To this end, we followed their
steps and applied our approach and the baseline approach
independently to the projects and commits in this benchmark.
We requested three refactoring experts to independently and
manually validate all identified refactorings. All of the par-
ticipants were required to have Java background. They had a
median of 7.5 years of programming experience and 5 years of



experience with software refactorings. The validation process
was time-consuming and labor-intensive, involving 3 experts
for a period of 2.5 months (i.e., 7.5 person-months).

Second, we independently applied the two evaluated ap-
proaches to the selected 20 projects, starting from the lat-
est commit. On each commit, if the evaluated approaches
generated identical results (i.e., the refactorings identified by
REEXTRACTOR+ and REFACTORINGMINER were exactly the
same), we simply dropped the commit and turned to the
next one because the identical results between the evaluated
approaches indicate that their true positives, false positives,
and false negatives are also the exactly same, resulting in no
statistical difference in the results. In contrast, if the evaluated
approaches generated non-identical results, we collected the
commit as a refactoring-conflict commit, and requested the
three refactoring experts to independently and manually check
refactorings discovered from the selected commit. In case of
inconsistent manual checking, the participants were requested
to discuss together and reach an agreement. Notably, the three
developers achieved a high consistency with a Fleiss’ kappa
coefficient [55] of 0.82. To control the cost of manual valida-
tion, we only selected the most recent 20 refactoring-conflict
commits per open-source project chronologically. Notably, we
did not employ random sampling because it increased the
uncertainty (i.e., possible bias in evaluation results) in the
replication of the evaluation. In total, we selected 400 commits
(20 projects x 20 commits) for our evaluation®. The size of
the sample guaranteed a confidence level of over 95% and
a margin of error of 5% [56], and thus we believed that the
conclusions drawn on the selected commits can be generalized
to the entire population (844,605 commits from 20 projects)
and are statistically meaningful. The validation process was
time-consuming and labor-intensive, involving 3 experts for a
period of 1.5 months (i.e., 4.5 person-months).

We also applied the proposed matching algorithms and
those in the baseline approach independently to the selected
projects. However, in a commit, the number of matching
relations is much greater than the number of refactorings.
To control the cost of manual validation, we only selected
the most recent 3 commits per project chronologically. We
requested three experienced developers (different from the
participants in the previous step) to independently and man-
vally check all matching relations in each commit. All of
the participants were required to have Java background. They
had a median of 9.5 years of programming experience, 4.5
years working as professional software developers, and 7
years of experience with version control systems. In case of
inconsistent manual checking, the participants were requested
to discuss together and reach an agreement. Notably, the three
developers achieved a high consistency with a Fleiss’ kappa
coefficient [55] of 0.87.

C. RQI: Performance in Refactoring Detection

To measure the performance of REEXTRACTOR+ in refac-
toring detection, we counted the number of true positives

2The commits analyzed in this study were newly collected from the selected
projects on March 28, 2024, rather than reusing the commit dataset provided
by Grund et al. [54]

TABLE II
PERFORMANCE IN REFACTORING DETECTION ON REFACTORINGMINER’S
BENCHMARK
Metrics REEXTRACTOR+ REFACTORINGMINER
#TP 5489 5514
#FP 273 197
#FN 1062 1037
Precision 95.26% 96.55%
Recall 83.79% 84.17%
Error Rate 4.74% 3.45%
Miss Rate 16.21% 15.83%

(#TP), the number of false positives (#FP), and the num-
ber of false negatives (#FN). If a refactoring operation was
reported by only one of the evaluated approaches and then
was manually confirmed by the participants, the refactoring
operation was taken as a false negative for the other approach
that failed to report it as a potential refactoring. We computed
precision=#TP/(#TP+#FP) and recall=#TP/(#TP+#FN), where
precision measures how often the identified refactorings were
manually confirmed and recall measures how often refactor-
ings were discovered by the evaluated approaches. The key
concern of RQ1 is to what extent REEXTRACTOR+ can reduce
the frequency of false positives and false negatives. Besides
precision, we also computed Error Rate=#FP/(#FP+#TP) and
Miss Rate=#FN/(#FN+#TP), which represent the frequency of
false positives and false negatives, respectively.

Our evaluation results on the refactoring benchmark of
REFACTORINGMINER are presented in Table II. We observe
from Table II that the performance of our approach is compara-
ble to that of the baseline approach. Specifically, compared to
REFACTORINGMINER, REEXTRACTOR+ demonstrates only a
1.29%=(96.55%-95.26%) reduction in precision, along with an
almost negligible recall reduction of merely 0.38%=(84.17%-
83.79%). We can observe from this table that the evaluated
approaches exhibit relatively low recall because these ap-
proaches rely on distinct detection methods, each of which has
inherent strengths and limitations in identifying refactorings.
By integrating these two approaches, a more comprehensive
refactoring detection can be achieved, leading to improved
recall. Therefore, it is essential to propose a novel refactoring
detection approach. Notably, the evaluation results differ from
those reported by REFACTORINGMINER because we intro-
duced a new refactoring detection tool and re-validated the
refactorings identified by the two evaluated approaches.

We leverage a real-world example from project Netty [57],
as depicted in Fig. 4, to illustrate a refactoring missed by
REFACTORINGMINER. In this example, the developer con-
ducted two inline method refactorings whereas REFACTOR-
INGMINER only identified one of them: inline principal
to getLocationPrincipal. Consequently, REFACTORINGMINER
resulted in a false negative. In contrast, REEXTRACTOR+
could successfully identify these two refactorings. We leverage
another real-world example from project Zuul [58], as depicted
in Fig. 5, to illustrate an incorrectly validated refactoring
REFACTORINGMINER. In this example, the developer re-
named the method getLocations on Line 193 in V,, to method
getDirectories on Line 197 in V1. REEXTRACTOR+ suc-



1444 1444 public Principal getPeerPrincipal() throws SSLPeerUnverifiedException {
1445 1445 Certificate[] peer = getPeerCertificates();
1446 1446 if (peer == null || peer.length == 0) {
1447 1447 return null;
1448 1448 }
1449 - return principal( peer);
1449 + return ((java.security.cert. X509Certificate) peer [0].getSubjectX500Principal();
1450 1450 }
1453 1453 public Principal getLocalPrincipal() throws SSLPeerUnverifiedException {
1454 1454 Certificate[] local = getLocalCertificates();
1455 1455 if (local == null || local.length == 0) {
1456 1456 return null;
1457 1457 }
1458 - return principal( local);
1458 + return ((java.security.cert. X509Certificate) local [0].getIssuerX500Principal( );
1459 1459 }
1461 - public Principal principal(Certificate[] certs) {
1462 - return ((java.security.cert. X509Certificate) certs[0].getIssuerX500Principal();
1463 - }

¥, (ID:bb17071) V1 (ID:303¢b53)

Fig. 4. Refactoring Missed by the Selected Baseline
135 135 List<File> getFiles() {
136 136 List<File> list = new ArrayList<File>();
137 - for (String sDirectory : config. getLocations()) {
138 + for (String sDirectory : config. getDirectories()) {
138 139 if (sDirectory !=null) {
147 148 }
148 149 H
149 150 return list;
150 151 }
177 179 public static class FilterFileManagerConfig
178 180 {
179 - private String[] locations;
181 + private String[] directories;
182 + private String[] classNames;
193 - public String[] getLocations() {
194 - return locations;
197 + public String[] getDirectories() {
198 + return directories;
199 + }
200 + public String[] getClassNames()
201 + {
202 + return classNames;
195 203 H
202 210 }

V, (ID:c5¢536f)

m  getLocations(): String[]

V.1 (ID:b25d3£3)
m getDirectories(): String[]

m  getFiles(): List<File> m  getFiles(): List<File>

Fig. 5. Refactoring Incorrectly Validated by the Selected Baseline

cessfully identified this refactoring because they were called
by the same method, i.e., getFiles on Lines 137 and 138. How-
ever, REFACTORINGMINER mistakenly identified that method
getLocations in V,, was renamed to method gerClassNames in
Vn+1, and this misidentification was incorrectly marked as a
true positive by the validators in the benchmark.

Our evaluation results on the new benchmark (comprising
400 commits from 20 open-source projects) are presented in
Table III, all of which were manually validated. From this
table, we make the following observations:

o REEXTRACTOR+ substantially reduced the number of
false positives and false negatives: In total, the number of
false positives was reduced by 57.4%=(408-174)/408 and
the number of false negatives was reduced by 54%=(869-
400)/869.

e The number of true positives was substantially im-
proved by REEXTRACTOR+ with an improvement of
18.4%=(3014-2545)/2545. The relative improvement in

TABLE III
PERFORMANCE IN REFACTORING DETECTION ON NEW BENCHMARK

Metrics REEXTRACTOR+ REFACTORINGMINER
#TP 3014 2545
#FP 174 408
#FN 400 869
Precision 94.54% 86.18%
Recall 88.28% 74.55%
Error Rate 5.46% 13.82%
Miss Rate 11.72% 25.45%
200
= False Positives (Our Approach)
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Fig. 6. Number of False Positives and False Negatives per Project

precision and recall are 9.7%=(94.54%-86.18%)/86.18%
and 18.4%=(88.28%-74.55%)/74.55%, espectively.

From the analysis of Table II and Table III, it is evident that
the performance of the baseline approach exhibits significant
variability across the two benchmarks. This discrepancy may
be due to the textual differences in the commits between the
two benchmarks. Upon further analysis, we identified that
the most common mistakes in the baseline approach were
caused by incorrect class matching, which typically occurred
when classes with highly similar implementations were re-
named and/or moved across multiple files. In our benchmark,
4.95%=19/400 of such commits led to matching mistakes
in the baseline approach, whereas the benchmark used by
RefactoringMiner contained only one commit of this
nature. Compared against the baseline approach, which relies
solely on the implementations of the classes, our approach
incorporates reference relations among classes, facilitating
more accurate class matching. This integration enables our
approach to better handle cases where classes with highly
similar implementations are renamed and/or moved, thereby
reducing the likelihood of matching mistakes and improving
overall accuracy.

Fig. 6 illustrates the comparison on individual projects. The
horizontal axis presents the involved projects. The vertical axis
presents the number of false positives and false negatives as
well as their sum on each subject project. From this figure, we
observe that on most cases (17 out of the 20 subject projects)
REEXTRACTOR+ reduces the number of mistakes (i.e., the
number of false positives plus the number of false negatives).

We employed the Wilcoxon signed-rank test [59] and used
Cliff’s Delta (d) as the effect size [60] to assess the statistical
significance of the observed reduction in false positives and



PERFORMANCE PER REFACTORING TYPE

TABLE IV

‘ REEXTRACTOR+ REFACTORINGMINER A Improvement
Refactoring Type

| #TP  Precision Recall | #TP  Precision Recall | #TP Precision Recall
Rename Class 226 98.26% 98.69% 152 83.06% 66.38% 74 (48.7%) 15.2% (18.3%) 32.31% (48.7%)
Rename Method 259 92.17% 88.7% 261 86.42% 89.38% -2 (-0.8%) 5.75% (6.7%) -0.68% (-0.8%)
Rename Field 103 96.26% 88.03% 96 88.89% 82.05% 7(7.3%) 7.37% (8.3%) 5.98% (7.3%)
Rename Variable 259 89% 84.92% 236 84.89% 77.38% 23(9.7%) 4.11% (4.8%) 7.54% (9.7 %)
Move Class 140 100% 98.59% 104 65.41% 73.24% 36 (34.6%) 34.59% (52.9%) 25.35% (34.6%)
Move & Rename Class 21 95.45% 70% 28 65.12% 93.33% -7 (-25%) 30.33% (46.6%) -23.33% (-25%)
Move Method 267 94.68% 97.8% 248 94.66% 90.84% 19(7.7%) 0.02% (0%) 6.96% (7.7 %)
Move & Rename Method 20 71.43% 71.43% 17 77.27% 60.71% 3(17.6%) -5.84% (-7.6%) 10.72% (17.7%)
Move Field 45 91.84% 86.54% 31 91.18% 59.62% 14 (45.2%) 0.66% (0.7%) 26.92% (45.2%)
Move & Rename Field 8 100% 88.89% 2 100% 22.22% 6 (300%) 0% (0%) 66.67% (300%)
Pull Up Method 45 100% 90% 30 69.77% 60% 15 (50%) 30.23% (43.3%) 30% (50%)
Push Down Method 23 100% 95.83% 13 92.86% 54.17% 10(76.9%) 7.14% (7.7 %) 41.66% (76.9%)
Pull Up Field 13 100% 92.86% 11 100% 78.57% 2(18.2%) 0% (0%) 14.29% (18.2%)
Push Down Field 6 100% 100% 5 100% 83.33% 1(20%) 0% (0%) 16.67% (20%)
Extract Method 304 98.06% 79.79% 270 92.78% 70.87% 34 (12.6%) 5.28% (5.7 %) 8.92% (12.6%)
Extract & Move Method 106 93.81% 89.08% 53 70.67% 44.54% 53 (100%) 23.14% (32.7%) 44.54% (100%)
Extract Class 56 90.32% 94.92% 32 94.12% 54.24% 24 (75%) -3.8% (-4%) 40.68% (75%)
Extract Superclass 6 85.71% 100% 6 75% 100% 0(0%) 10.71% (14.3%) 0% (0%)
Extract Subclass 9 100% 100% 3 100% 33.33% 6 (200%) 0% (0%) 66.67% (200%)
Extract Interface 5 100% 83.33% 4 44.449% 66.67% 1(25%) 55.56% (125%) 16.66% (25%)
Extract Variable 233 93.2% 82.04% 174 91.1% 61.27% 59(33.9%) 2.1% (2.3%) 20.77% (33.9%)
Inline Method 49 92.45% 66.22% 50 78.13% 67.57% -1(-2%) 14.32% (18.3%) -1.35% (-2%)
Move & Inline Method 55 96.49% 98.21% 39 84.78% 69.64% 16 (41%) 11.71% (13.8%) 28.57% (41%)
Inline Variable 95 93.14% 81.9% 48 80% 41.38% 47 (97.9%) 13.14% (16.4%) 40.52% (97.9%)
Change Type Declaration 1 100% 25% 4 100% 100% -3 (-75%) 0% (0%) -75% (-75%)
Change Return Type 169 93.89% 93.89% 146 93.59% 81.11% 23(15.8%) 0.3% (0.3%) 12.78% (15.8%)
Change Field Type 153 99.35% 90.53% 155 91.72% 91.72% -2 (-1.3%) 7.63% (8.3%) -1.19% (-1.3%)
Change Variable Type 338 93.89% 88.95% 327 86.74% 86.05% 11(3.4%) 7.15% (8.2%) 2.9% (3.4%)
Total ‘ 3014 94.54% 88.28% ‘ 2545 86.18% 74.55% ‘ 469 (18.4%) 8.36% (9.7%) 13.73% (18.4%)

false negatives for the evaluated approaches by taking each
commit as an individual. The evaluation results confirmed that
the reduction in #FP (p-value [61]=2.6E-5 < 0.05 and Cliff’s
|d|=0.11) and #FN (p-value=2.93E-9 and Cliff’s |d|=0.24) was
statistically significant. Similarly, the significant test confirmed
that the improvement in precision (p-value=5.22E-6 and Cliff’s
|d|=0.17) and recall (p-value=1.37E-7 and Cliff’s |d|=0.23)
was statistically significant.

We further investigated their performance on different refac-
toring types. The evaluation results are presented in Table IV.
The last three columns present to what extent REEXTRAC-
TOR+ outperformed the baseline approach. Note that numbers
outside brackets are absolute improvement whereas numbers
within brackets are relative improvement. We observe from
Table IV that REEXTRACTOR+ outperformed the baseline ap-
proach or achieved comparable performance on three-quarters
of all involved refactoring types, improving both precision and
recall while identifying more true positives.

We leverage a real-world example from project Java-
Parser [62], as depicted in Fig. 7, to illustrate how RE-
EXTRACTOR+ avoided some false positives. According to
the commit message, the developers conducted two rename-
related refactorings in this commit, namely, the renaming
of class ConfigurationOption to DefaultConfigurationOption
and the renaming of interface ConfigurableOption to Con-
figurationOption. Unfortunately, REFACTORINGMINER erro-
neously identified a change in type declaration kind for class
ConfigurationOption (from class to interface) and a subclass

Rename class ConfigurationOption to DefaultConfigurationOption and in... Browse files

.terface ConfigurableOption to ConfigurationOption

' master (#2974)
© v_snapshot_68f5e84 ... javaparser-parent-2.24.0
A jlerbsc committed on Dec 8, 2020

1 parent 9d8184e commit ed@Scee

Fig. 7. An example of False Positives from Commit e405cee in JavaParser

extraction from class ConfigurationOption to class Default-
ConfigurationOption. This misidentification occurred during
the matching phase, where class ConfigurationOption in V,
was mistakenly matched to interface ConfigurationOption in
Va41. In contrast, our approach successfully avoided these
mistakes because the proposed matching algorithm accurately
matched the developers’ actual intentions.

Fig. 8 illustrates how REEXTRACTOR+ exploits references
to accurately identify and match the renaming of both classes
and interfaces. Specifically, interface ConfigurableOption on
Line 1948 (as a type parameter) and class ConfigurationOption
on Line 1949 (as a class instantiation) were accessed by
method getOption in V,,. Similarly, in V,,41, interface Con-
figurationOption on Line 1948 (as a type parameter) and class
DefaultConfigurationOption on Line 1949 (as a class instantia-
tion) were accessed by the same method. Consequently, based
on their references, REEXTRACTOR+ successfully matched
these two interfaces as well as these two classes, effectively



1948 - private Optional< ConfigurableOption> getOption(ConfigOption cOption) {
1949 - return configuration.get(new ConfigurationOption(cOption));
1948 + private Optional<ConfigurationOption> getOption(ConfigOption cOption) {
1949 + return configuration.get(new DefaultConfigurationOption (cOption));
1950 1950 }
V, (ID:9d8184e) Vi1 (ID:e405cee)

ConfigurationOption DefaultConfigurationOption

m  getOption(ConfigOption): Optional m  getOption(ConfigOption): Optional
ConfigurationOption

ConfigurableOption

m  getOption(ConfigOption): Optional m  getOption(ConfigOption): Optional

Fig. 8. False Positive Avoided by REEXTRACTOR+

Issue #12101: swap all non-violation messages to localized message Browse files
¥ master (#12105)
© checkstyle-10.12.5 ... checkstyle-10.4
} rnveach authored and nrmancuso committed on Oct 10, 2022
1 parent 65655da commit a8f@657
rnveach commented on Aug 26, 2022 + edited by romani + Member

Issue #12101

The issue is our exceptions use LocalizedMessage though it does not have access to the global locale. It is expecting to be
supplied the locale, but we never provide it the overridden locale from the config,

As the class name implies, LocalizedMessage should currently be the central place for the locale storage. (This does not resolve
#12104 but does proceed to better management). The locale does not need to be provided to LocalizedMessage in the

constructor anymore as anyone using should use the global locale, currently.

The second commit converts a bunch of violation uses to LocalizedMessage . The areas being used are not actual violations but
just being used for locale messages. Violation and LocalizedMessage both use the global locale, so this is really a no change. Any
fields dropped when passing to the constructor were not being used anyways. So we basically get the same effect, with less
unnecessary coding

This is built on top of #12102 and thus this PR is blocked until the other is merged, hence why this is drafted

(@)

Fig. 9. An example of False Negatives from Commit a8f0657 in Checkstyle

avoiding false positives generated by the baseline approach.

We leverage another real-world example from project
Checkstyle [63], as depicted in Fig 9, to illustrate how REEX-
TRACTOR+ effectively avoids two instances of false negatives,
i.e., change variable type Violation to LocalizedMessage and
rename variable Imessage to message. Fig. 10 depicts the
differences between the matched methods. In this example,
the developers transition numerous usages of Violation into
LocalizedMessage. Unfortunately, the baseline approach only
matched the return statement on Line 102 in V,, and the
return statement on Line 98 in V,, ;. It failed, however,
to identify and match variable declaration Imessage : Viola-
tion spanning Lines 94-101 in V,, and variable declaration
message : LocalizedMessage spanning Lines 93-97 in V, ;.
The mismatching arose because these two variable declaration
statements cannot be rendered textually consistent through
AST node replacements. Consequently, the baseline approach
resulted in two false negatives. In contrast, our approach
successfully matched not only the two return statements but
also the two variable declaration statements. Based on the
mappings, REEXTRACTOR+ inferred that change variable
type and rename variable refactorings accurately.

We also notice that on all types of refactorings, REEXTRAC-
TOR+ reduced the number of false positives and false nega-
tives. Among them, the maximum reduction including both

93 92 private static String getParseErrorMessage(ParseErrorMessage parseErrorMessage) {
94 - final Violation Imessge = new Violation(
95 - parseErrorMessage.getlineNumber(),
93 + final LocalizedMessage message = new LocalizedMessage(
96 94 "com.puppycrawl.tools.checkstyle.checks javadoc.messages”
97 - parseErrorMessage.getMe Key(),
98 - parseErrorMessage.getMessage Arguments(),
99 0
100 95 DetailNodeTreeStringPrinter.class,
101 - null);
9 + parseErrorMessage.getMessageKey(),
97 + parseErrorMessag Arguments());
102 - return "[ERROR:" + parseErrorMessage.getLineNumber() + "] " + Imessage.getViolation();
98 + return "[ERROR:" + parseErrorMessage.getLineNumber() + "] " + message.zetViolation();
103 99 }

¥, (ID:65655da) Vi1 (ID:a810657)

Fig. 10. False Negative Avoided by REEXTRACTOR+

2732 - private static File requireDirectory(finale File directory, final String name) {
2733 - Objects.requireNonNull(directory, name);
2734 - if (!directory.isDirectory()) {
2735 - throw new Illegal ArgumentException("Parameter ' " + name +
"'is not a directory: ' " + directory + "' ");
2736 - }
2737 - return directory;
2738 - }
2749 - private static File requireDirectoryExists(finale File directory, final String name) {
2750 - requireExists(directory, name);
2751 - requireDirectory(directory, name);
2751 - return directory;
2753 - }
2729 + private static void requireDirectoryExists(final File directory, final String name)
throws FileNotFoundException {
2730 + Objects.requireNonNull(directory, name);
2731 + if (Idirectory.isDirectory()) {
2732 + if (directory.exists()) {
2733 + throw new Illegal ArgumentException("Parameter ' " + name +
"' is not a directory: ' " + directory + "' ");
2734 + }
2735 + throw new FileNotFoundException("Directory ' " + directory + "' does not exist.");
2736 + }

V,, (ID:29dc5ea)

m requireDirectory(File, String): File

Vi1 (ID:33db634)

m requireDirectoryExists(File, String): void

=

copyDirectory(File, File. FileFilter,
boolean, CopyOption...): void

m  copyDirectory(File, File, FileFilter.
boolean, CopyOption...): void

m moveDirectory(File, File): void m moveDirectory(File, File): void

m moveFileToDirectory(File, File. boolean): void m moveFileToDirectory(File. File. boolean): void

m requireDirectoryIfExists(File. String): File m requireDirectoryIfExists(File. String): File
Fig. 11. False Positive And False Negative Due to References

false positives and false negatives is move class refactorings
(i-e., 97.8%=(93-2)/93), followed by rename class refactorings
(i.e., 93.5%=(108-7)/108). It is reasonable because the larger
code entities (e.g., classes and interfaces) encapsulate broader
reference relations. We could infer that the more references
involved in the code entities, the lower the likelihood of
matching mistakes. Consequently, this is likely to lead to
diminished performance in the detection of refactoring.
Although exploiting references improves the overall perfor-
mance of the proposed approach, the references occasionally
result in false positives and false negatives. A typical example
from project Commons 10 [64] is presented in Fig. 11. In this
example, method requireDirectory on Line 2732 in V,, and
method requireDirectoryExists on Line 2729 in V,,; were
incorrectly matched by our approach. This misidentification
occurred because the two methods were called by the same
code entities. As a result, REEXTRACTOR+ reported two false
positives: A rename method refactoring and a change return
type refactoring based on the incorrect matching. In contrast,
REFACTORINGMINER matched method requieDirectoryExists
on Line 2749 in V,, and method requireDirectoryExists on
Line 2729 in V), because their signatures were of the same
except for the return types. As a result, REFACTORINGMINER
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Fig. 12. Number of Mistakes per Project

reported an inline mthod refactoring: Inline method requireDi-
rectory to requireDirectoryExists, which aligns with the refac-
toring operation conducted by the developers. However, such
misidentifications are infrequent, and references are effective
for matching code entities in most cases.

D. RQ2: Performance in Entity Matching

To measure the performance of the proposed algorithm in
entity matching, we focused on the number of false positives
(#FP) and the number of false negatives (#FN). A false positive
is a pair of entities <ej,eo> that is reported as matched
whereas manual checking marked them as mismatched. In
contrast, a false negative is a pair of entities that is manually
marked as matched but the matching algorithm does not
report it as a matched entity pair. #MST=#FP+#FN (i.e., the
number of false positives plus the number of false negatives)
represents how frequently the evaluated matching algorithms
make mistakes. The key concern of RQ2 is to what extent
the proposed matching algorithm can reduce the frequency of
mistakes (i.e., #MST). Besides #MST, #FP, and #FN, we also
computed the precision and recall where precision measures
how often the reported pairs were manually confirmed, and
recall measures how often matched pairs were retrieved by
the evaluated algorithms.

Our evaluation results are presented in Fig. 12. The hor-
izontal axis presents the involved projects. The vertical axis
presents the number of false positives and false negatives as
well as their sum (i.e., #FP, #FN, and #MST) on each subject
project. From this figure, we make the following observations:

o The proposed matching algorithms substantially reduced
the frequency of mistakes: The total number of mistakes
(i.e., #MST) was reduced from 442 to 146, with a
substantial reduction of 67%=(442-146)/442.

e On average, the number of false positives per project
was reduced by 39.5%=(4.05-2.45)/4.9 and the number of
false negatives per project was reduced by 74.8%=(18.05-
4.55)/18.05.

o The proposed matching algorithms reduced or maintained
the frequency of mistakes on most (17 out of the 20) of
the subject projects.

We employed the Wilcoxon signed-rank test [59] and used

Cliff’s Delta (d) as the effect size [60] to validate whether there

TABLE V
PERFORMANCE PER ENTITY TYPE

Entity Type Approach #MST #FP #FN Precision Recall
Our Algorithm 2 0 2 100% 99.62%

Classes Baseline 23 3 20 99.4% 96.16%
A Improvement -21 -3 -18 0.6% 3.46%

Our Algorithm 0 0 0 100% 100%

Interfaces Baseline 0 0 0 100% 100%
A Improvement 0 0 0 0% 0%

Our Algorithm 0 0 0 100% 100%

Enums Baseline 0 0 0 100% 100%
A Improvement 0 0 0 0% 0%

Annotation Our Algorithm 0 0 0 100% 100%
Types Baseline 0 0 0 100% 100%
My A Improvement 0 0 0 0% 0%
Our Algorithm 0 0 0 100% 100%

Initializers Baseline 2 0 2 100% 77.78%
A Improvement -2 0 -2 0% 22.22%

Our Algorithm 3 2 1 98.23% 99.11%

Fields Baseline 17 3 14 97.03%  87.5%
A Improvement -14 -1 13 1.2% 11.61%

Our Algorithm 16 4 12 99.6%  98.8%

Methods Baseline 41 7 34 99.28% 96.59%
A Improvement -25 322 0.32% 2.21%

Enum Our Algorithm 0 0 0 100% 100%
Constants Baseline 0 0 0 100% 100%
A Improvement 0 0 0 0% 0%

Annotation Our Algorithm 0 0 0 100% 100%
Members Baseline 0 0 0 100% 100%
A Improvement 0 0 0 0% 0%

Our Algorithm 125 43 82  96.85% 94.16%

Statements ~ Baseline 359 68 291 94.24% 79.27%
A Improvement -234 25 -209 2.61% 14.89%

Our Algorithm 146 49 97 98.39% 96.86%

Total Baseline 442 81 361 97.12% 88.32%
A Improvement  -296 -32 -264 1.27%  8.54%

is a statistically significant difference between the total number
of mistakes caused by the two approaches. The evaluation
results (p-value=9.69E-5 and Cliff’s |d|=0.42) confirmed that
the reduction in the number of mistakes (#MST) was statis-
tically significant. Similarly, the significance tests confirmed
that the improvement in precision (p-value=0.04 and Cliff’s
|d|=0.19) and recall (p-value=3.09E-5 and Cliff’s |d|=0.49)
was statistically significant.

We further investigated their performance in matching dif-
ferent categories of code entities, e.g., “classes”, “methods”
and “statements”. The evaluation results are presented in
Table V. From this table, we observe that the proposed
matching algorithms outperform or are comparable to the
baseline approach across all involved entity types. We also
noticed that the proposed matching algorithms resulted in high
precision and recall on all of the entity types. The minimal
precision (on “statements”) was 96.85%, and the minimal
recall (on “statements”) was 94.24%. It may suggest that the
proposed matching algorithms worked well on all entity types.
The evaluated approaches reported the highest numbers of
mistakes in matching entities of “statements”. It is reasonable
because the number of involved statements is significantly
greater than those of classes, methods, and fields.



90 + public void doLogin() throws IOException {

T T

96 + } else if (!HadoopUserUtils.isProxyUser(UserGrouplnformation.getCurrentUser())) {

97 + LOG.info("Attempting to load user's ticket cache");

98 + UserGroupInformation.loginUserFromSubject(null);

99 + LOG.info("Loaded user's ticket cache successfully");

e [ } e
73 - public UserGrouplnformation dolLogin() throws IOException {

109 +  public UserGroupInformation dologinAndReturnUGI() throws IOException {
83 119 } else if ('HadoopUserUtils.isProxyUser(currentUser)) {
84 120 LOG.info("Attempting to load user's ticket cache");
89 125 UserGroupInformation ugi =

UserGrouplInformation.getUGIFromTicketCache(ccache, user);
90 126 LOG.info("Loaded user's ticket cache successfully");
return ugi;

91 127

¥, (ID:3406727)

m' doLogin(): UserGroupInformation

V.1 (ID:575517b)

m doLoginAndReturnUGI(): UserGrouplInformation

m  obtainDelegationTokens(Credentials): void m  obtainDelegationTokens(Credentials): void

m  startTokensUpdate(): void m startTokensUpdate(): void

Fig. 13. False Positive Avoided by the Proposed Matching Algorithm

1023 - private static List<String> getClassShortNames(List<String> canonicalClassNames) {
1024 - final List<String> shortNames = new ArrayList<>();
1025 - for (String canonicalClassName : canonicalClassNames) {
1026 - final String shortClassName = canonicalClassName
1027 - .substring(canonicalClassName.lastIndexOf(".") + 1);
1028 - shortNames.add(shortClassName);
1029 - }
1030 - return shortNames;
1015 + private static Set<String> getClassShortNames(Set<String> canonicalClassNames) {
1016 + return canonicalClassNames.stream()
1017 + .map(CommonUltil::baseClassName)
1018 + .collect(Collectors.toCollection(HashSet::new));
1031 1019 }

¥, (ID:1810e21) Vi1 (ID:43ae5d6)

m  getClassShortNames(List<String>): List<String> m getClassShortNames(Set<String>): Set<String>
f ignoreAnnotationShortNames: List<String> £ ignoreAnnotationShortNames: Set<String>
£ immutableClassShortNames: List<String> £ immutableClassShortNames: Set<String>

m beginTree(Detail AST): void m beginTree(Detail AST): void

Fig. 14. True Positive Missed by the Selected Baseline

We leverage a real-world example from project Flink [65]
in Fig. 13 to illustrate how the proposed matching algorithms
avoided some false positives. The method doLogin on Line 73
in V,, was renamed as doLoginAndReturnUGI on Line 109 in
Vih+1, and a new method named doLogin on Line 90 in V,,
was added. However, the baseline approach mapped method
doLogin in V,, by mistake to method doLogin in V,,; because
their method signatures were identical except for the return
types. In contrast, our approach correctly mapped method
doLogin in V,, to method doLoginAndReturnUGI in V,
because 1) their method bodies were exactly the same and
2) they were called by the same software entities, i.e., start-
TokensUpdate and obtainDelegeationTokens. It did not map
doLogin in V,, to doLogin in V,,; although their signatures
were highly similar because they were significantly different
concerning their references (callers) and method bodies.

We leverage another real-world example from project
Checkstyle [66] in Fig. 14 to illustrate how the proposed
matching algorithms successfully retrieved the pairs (i.e., false
negatives) missed by the baseline approach. The baseline
approach failed to match method gerClassShortNames on Line
1023 in V,, with method getClassShortNames on Line 1015
in V,4;. The change between these two methods involves
a complex refactoring (replace loop with pipeline [1], [67]).

TABLE VI
IMPACT OF PATCH SIZE

‘ REEXTRACTOR+ REFACTORINGMINER
Patch Size

\ #TP #FP #FN \ #TP #FP #FN
QI [ 2, 30, 61] 1.88 0.22 0.36 1.36 0.46 0.88
Q2 [ 62, 102, 149] 297 0.21 0.6 2.38 0.25 1.19
Q3 [150, 268, 416] 6.8 0.5 092 5.37 1 2.35
Q4 [419, 1851, 32372] | 18.49 0.81 2.12 | 16.34 2.37 4.27

The refactoring made the two method bodies dissimilar, which
caused the failure of the baseline approach that heavily de-
pended on the statement-level similarity of method bodies.
Our approach succeeded because it leverages the reference-
based similarity: The two methods are called by exactly the
same Java entities (i.e., fields ignoreAnnotationShortNamses
and immutableClassShortNames as well as method beginTree).

E. RQ3: Impact of Patch Size

We investigated the impact of patch size on the performance
of the evaluated approaches, and the evaluation results are
presented in Table VI. Notably, to reduce the randomness,
we partitioned the involved commits into four equally sized
groups according to their patch size: Q1, Q2, Q3, and Q4
where Q1 was composed of the smallest 25% commits and
Q4 was composed of the largest 25% commits. The first
column of Table VI specifies the data groups along with the
minimum size, average size, and maximum size of the patches
within each data group. For example, within the first category
Ql, the minimum size, average size, and maximum size of
the patches are 2, 30, and 61, respectively. Columns 2 to 5
present the performance of REEXTRACTOR+ on the given data
group. Columns 6 to 9 present the performance of the baseline
approach on the given data group. Notably, the performance
metrics are the averages. For example, #TP is the average
number of true positives per commit in the given group.

We observe from Table VI that the evaluated approaches
made more false positives and false negatives with the increase
in patch size. This is reasonable because the larger the patches
are, the more impacted entities there are (and thus the more
chance to make mistakes). From Table VI, we also observe
that REEXTRACTOR+ outperformed the baseline approach on
all categories of the patches, i.e., Ql, Q2, Q3, and Q4. It
may suggest that REEXTRACTOR+ can stably improve the
state of the art in refactoring detection regardless of the patch
size in the commits. However, as shown in Table VI, the
patch size has a relatively greater impact on the performance
of the baseline approach than that on REEXTRACTOR+. For
REEXTRACTOR+, the average number of false positives varies
slightly from 0.22 (Q1) to 0.81 (Q4) and the average number
of false negatives varies somewhat from 0.36 (Q1) to 2.12
(Q4), suggesting that the patch size had little influence on the
performance of REEXTRACTOR+.

To quantitatively measure the correlation between the patch
size and the performance of the evaluated approaches, we
computed their point-biserial correlation coefficients [68] by
taking each commit (patch) as an individual. The computation



results suggested that the correlation coefficient between the
patch size and our approach’s false positives and false nega-
tives were 0.14 and 0.12, respectively. It may indicate a weak
correlation between the patch size and both false positives and
false negatives in our approach. The correlation coefficients
between the patch size and the baseline approach’s false
positives and false negatives were 0.5 and 0.32, respectively. It
may suggest a moderate correlation between the patch size and
false positives in the baseline approach, while the correlation
between the patch size and its false negatives is weak.

F. RQ4: Efficiency

The evaluation was conducted on a machine with Intel Core
i7-11700 CPU @ 2.50GHz, 16 GB DDR4 memory, 512 GB
SSD, Windows 10 OS, and Java 17.0.5 x64 with a maximum
of 8GB Java heap memory (i.e., -Xmx8g). For each approach,
we recorded the execution time taken to detect refactorings on
a given repository and commit using System.nanoTime ()
Java method [69]. All repositories were first cloned locally
from GitHub. To make a fair comparison, we followed the
methodology outlined by Tsantalis et al. [34] to exclude the
time spent on checkout commits, as the checkout operation
involves disk writes that introduce significant time overhead.
Specifically, it takes approximately 10.2 minutes to process
all 400 commits by checking out commits, with a maximum
checkout time of 8.62 seconds. Our evaluation results suggest
that REFACTORINGMINER keeps efficient across all commits
regardless of their patch size. The median and average ex-
ecution time for all commits were 0.17 seconds and 0.63
seconds, respectively, with a minimum execution time of 0.01
seconds and a maximum execution time of 34.48 seconds. In
comparison, our approach had median and average execution
times of 0.88 seconds and 2.27 seconds, respectively, with
a minimum execution time of 0.07 seconds and a maximum
execution time of 37.89 seconds. The time cost of our ap-
proach is acceptable because large-scale refactoring discovery
is usually conducted once to construct extensive datasets of
real-world refactorings. As for the refactoring discovery on a
specific commit or whole software project (to understand the
history of code evolution), the proposed approach could finish
in a few seconds (for a single commit) or tens of minutes
(for a single project). Notably, the proposed entity matching
algorithm should to checkout parent commits and retrieve the
references of code entities in the two versions, as we will
discuss later. It is a time-consuming process that consumes
65.5%=596.12/909.65 (seconds) of the total time cost.

We investigated the number of iterations required for the
proposed matching algorithm to become stable. The evaluation
results are presented in Table VII. The first column specifies
the number of iterations performed. Column 2 presents how
many (and how percentage) the iterative matching became
stable after the given number of iterations. For example,
according to the second row of the table, we know that the
entity matching algorithm became stable on 260 commits
(accounting for 65% of the evaluated commits) after two
iterations. From the last column, we know that on 34 samples
(method pairs), the statement matching algorithm required 5+

TABLE VII
EXECUTED ITERATIONS FOR ITERATIVE MATCHING

Required Iterations Entity Matching Statement Matching

2 260 (65%) 6621 (90.69%)
3 102 (25.5%) 538 (7.37%)
4 25 (6.25%) 85 (1.16%)
5 6 (1.5%) 23 (0.32%)
S+ 7 (1.75%) 34 (0.47%)

iterations to become stable. From Table VII, we observe that
the iterative strategy in the proposed matching algorithms is
efficient. In 90.5%=(65%+25.5%) of cases, the entity matching
became stable after two or three iterations. The median and
average number of iterations needed for entity mappings are
2 and 2.5, respectively. We also observe that the statement
mappings had a great chance (90.69%) to become stable
after only two iterations. The median and average number
of iterations needed for statement mappings are 2 and 2.13,
respectively. The maximum number of iterations needed for
both entity mappings and statement mappings is eight.

IV. DISCUSSION

To compute the reference-based similarity, we build an
ERG to retrieve the references associated with code entities.
Notably, we exclude the AST nodes from third-party libraries,
as such nodes do not serve as reference relations of the to-
be-matched entities. In other words, the code in third-party
libraries does not call any methods or create objects from the
local project, thus there are no references to the local code
entities within them. In addition, our approach leverages the
binding information of AST nodes to associate with code en-
tities. Notably, the proposed approach needs to checkout both
the parent and child commits to retrieve reference relations of
the code entities in the old and the new versions respectively.
This step is necessary because the resolveBinding()
method depends on the project’s environment, including class
path, source path, and encoding. If the project’s version on
the hard disk differs from the version corresponding to the to-
be-retrieved entities, JDT cannot resolve the source path, and
thus the method will return null. As a result, our approach
incurs a higher time cost compared to the baseline approach.

We propose an efficient retrieval strategy to build the ERG,
i.e., reference relations are not retrieved from unchanged
source code files. First, for some large projects, the number of
unchanged files may be thousands or even more. It is resource-
intensive and time-consuming to retrieve reference relations
from a large number of source code files. Second, although
this strategy may miss some references, it does not impact
any performance of the matching algorithm. We imagine two
scenarios to explain why the proposed retrieval strategy does
not impact the performance:

1) For code entities (e.g., methods) whose signatures and
enclosing classes remain unchanged, their references
may exist in the unchanged source code files. However,
such entities have already been matched during the
qualified name-based matching and will not be matched
again during the reference-based matching. Therefore,



there is no need to retrieve references from unchanged
files for such entities.

2) For code entities whose signatures or enclosing classes
have changed, their references cannot exist in unchanged
source code files. For example, if a method’s signature
changes (e.g., renaming or adding parameters), the en-
tities that directly call it must also change, and the files
in which they are located will also change.

In summary, the proposed approach does not need to retrieve
references from unchanged files, improving efficiency without
reducing performance.

Our approach demonstrates superior performance in iden-
tifying class-level refactorings, such as remame class and
move class, significantly outperforming existing approaches.
The success is primarily due to our approach’s capability to
leverage the references of the entities to match code changes
and infer these refactorings. However, we also observed that
REFACTORINGMINER may erroneously identify move method
refactorings within renamed or moved classes because it fails
to match them. A particularly challenging scenario arises when
the to-be-matched classes are empty (i.e., classes that do not
contain any code entities) and lack external references. Our
approach first utilizes the JGit RenameDetector, as introduced
in Section II-B, to establish an initial mapping for such classes.
After that, the various similarities (including reference-based
similarity) are employed to update the mapping. For empty
classes that lack external references, the mapping built by JGit
RenameDetector is the final mapping and no more adjustment
is applied. In addition, future work will attempt to incorporate
additional references such as StringLiteral to further overcome
the limitation of missing external references.

Moreover, our approach tends to accurately identify cases
where a small expression is extracted from a larger state-
ment into a new method. We leverage a real-world example
from project Commons IO [70], as depicted in Fig. 15, to
illustrate why our approach could identify such refactorings.
In this example, the developer extracted the method call
getClass().getSimpleName() on Line 603 in V,, as a new
method getSimpleName on Line 577 in V1. Our approach
could successfully identify this refactoring since the refactored
statement becomes textually identical to the original statement
after replacing the method call with the return expression.

For identifying overlapping refactorings, our approach could
effectively handle such cases by employing a novel heuristic
that computes the similarity between the extracted expression
and the original statement, i.e., |M| > |Ur, ,|. For example,
the developer extracted a method call expression into a new
variable and renamed the called method. Although the devel-
oper conducted overlapping refactorings, our approach could
still identify them (i.e., extract variable and rename method
refactorings) based on the heuristic rules defined in Sec-
tion II-G. The evaluation results demonstrate the effectiveness
of our approach in identifying such refactorings. However, it is
important to note that the current state of our approach does
not yet support nested refactorings, such as extract method
within another extracted method. This limitation highlights an
area for future improvement and refinement.

577 + public String getSimpleName() {
578 + return getClass().getSimpleName();
575 & }
601 605 @Override
602 606 public String toString() {
603 - return getClass().getSimpleName() + "[" + origin.toString() + "]";
607 + return getSimpleName() + "[" + origin.toString() + "]";
604 608 }

V, (ID:3¢53¢39) Vi1 (ID:7€a97b3)

Fig. 15. True Positive Identified by Our Approach

A. Threats to Validity

A threat to internal validity is that the ground truth in the
employed benchmark could be inaccurate. To construct the
ground truth, we requested three refactoring experts to man-
ually check the refactorings involved in the selected commits
(from open-source projects). However, the participants were
not the original developers, and thus their manual checking
could be inaccurate. To mitigate this threat, we requested them
to independently check each refactoring, and computed the
Fleiss’ kappa coefficient (0.82) to validate the high level of
consistency. If the evaluated tools detect the same changes
but report them with different types of refactoring, the evalu-
ation may be biased, especially for refactorings such as Split
Method, Merge Method, Split Class, and Merge Class. To mit-
igate this threat, we applied RefactoringMiner to identify all
instances of these four refactoring types and carefully validated
them to prevent RefactoringMiner from being penalized with
false negatives.

A threat to external validity is the limited testing data.
Note that the evaluation involved difficult and time-consuming
manual construction of ground truth. Consequently, it is diffi-
cult to enlarge the testing dataset. However, evaluation results
on small testing datasets may suffer from limited generality.
To increase the diversity of the dataset, we selected 20
refactoring-discovering commits from each of the 20 subject
projects. On one side, the testing data covers diverse projects,
increasing the diversity of the dataset. On the other side, it
limited the total number of to-be-checked refactorings, which
reduced the cost of manual checking.

Another threat to the external validity of our conclusions
lies in the sampling method for selecting the 400 commits
analyzed in this paper. While these commits were not chosen
randomly, the selection process was carefully designed to en-
sure the experiment’s reproducibility. However, this controlled
selection may introduce bias and limit the generalizability of
our findings to the broader population of commits. Future
work could explore more diverse and randomized datasets
to mitigate this threat. In addition, RefactoringMiner
supports over 100 types of refactoring, but our evaluation only
compares the results on 28 of these refactoring types. These
refactorings were chosen because they are among the most
popular, widely used by developers, and extensively studied
in the research community. However, the limited scope may
overlook potential discrepancies or insights associated with
other refactoring types. To mitigate this threat, in the future,
we would like to implement more refactoring heuristics to



support a broader range of refactoring types and conduct a
more comprehensive comparison with competitive tools.

To facilitate further validation and further improvement, we
make the replication package (including both the implementa-
tion of the proposed approach and the evaluation data) publicly
available on GitHub [71].

B. Limitations

Although the key insight of the proposed approach is not
language-specific, the current implementation of the approach
works on Java projects only. First, it depends on automated
parsing of source code that is often language-specific. Second,
the proposed approach leverages the data types of code enti-
ties, and thus it may not be easily adapted to programming
languages like Python and JavaScript where the data types
could not be determined via static analysis. Finally, some
heuristics used for refactoring detection are also language-
specific, such as pull up and push down refactorings.

The reference-based approach is more resource-consuming
than alternatives because it is time-consuming to retrieve all
references for each of the involved entities within a given
commit. To minimize the cost, we take the following measures.
First, our approach only retrieves references for those that
could not be matched by qualified names. Most of the involved
entities within the changed files could be matched by qualified
names, which significantly reduces the cost of retrieving
references. Second, the proposed approach only considers
references whose callers and callees are within the changed
files. That is, it does not search unchanged files for references
because software entities accessed by such unchanged files
must have kept their qualified names intact. Ignoring such
unchanged files could significantly reduce the cost because
most of the files in the repository are not influenced by a
given commit.

References play a crucial role in matching code entities, but
their effectiveness may be limited or even backfire, particularly
in cases involving unreliable references. As presented in
Fig 11, unreliable references can lead to incorrect matches
especially when the implementations of code entities exhibit
significant structural differences. Furthermore, in cases where
code entities lack references altogether, we rely solely on their
implementations for matching, highlighting the limitations of
reference-based matching. We observed that in these specific
cases, the entity matching algorithm based on AST node
replacements (i.e., RefactoringMiner [33], [34]) tends
to match more accurately. This is likely because AST node
replacement-based matching focuses on structural similarity
between code entities, independent of external references,
which can sometimes be missing. A typical example from
project Commons Lang [72] is presented in Fig. 16. In this
example, our approach was unable to match test method
testTimeZoneStrategy on Line 57 in V,, with test method
testTimeZoneStrategy_TimeZone on Line 63 in V. The
mismatching lies in the absence of references and the low
implementation similarity between the two methods. How-
ever, REFACTORINGMINER successfully identifies a matching
between the statements on Line 58 and Line 64 within the

55 61 (@Parameterized Test
56 62 (@MethodSource("java.util.Locale#getAvailableLocales") {
57 - public void testTimeZoneStrategy(final Locale locale) {
58 - testTimeZoneStrategyPattern(locale);
63 + public void testTimeZoneStrategy TimeZone(final Locale locale) {
64 + testTimeZoneStrategyPattern_TimeZone_getAvailableIDs(locale);
59 65 H
66 - public void testTimeZoneStrategyPattern(final Locale locale) {
78 + public void testTimeZoneStrategyPattern TimeZone getAvailableIDs(
final Locale locale) {
67 79 Objects.requireNonNull(locale, "locale");
59 65 }

V, (ID:56e6687) Vo1 (ID:880b85d)

Fig. 16. False Negative Due to the Absence of References

respective methods by replacing the method call node. As
a result, these two methods can be matched because their
statements become textually identical after the replacement.

Another limitation of our approach is that it has a slower
execution time compared to the baseline approach. However,
our evaluation results demonstrate that the performance im-
provement achieved by our approach compensates for this
drawback. Consequently, for developers who prioritize speed
and need immediate results, the baseline approach may be
a more suitable choice. Nevertheless, it is important to note
that refactoring discovery is performed in the backend, where
execution time is usually less critical.

V. RELATED WORK
A. Refactoring Detection

Identifying software refactorings is crucial for understand-
ing the evolution of software systems and facilitating research
in the field with real-world instances. Several approaches have
been proposed for refactoring detection. These approaches
typically involve matching code entities between two versions
of a software project and applying heuristics to identify
refactorings. One such approach is REFACTORINGCRAWLER
developed by Dig et al. [31], which first employs Shingles
encoding [73] for syntactic analysis to discover similar code
entities (methods, classes, and packages) and identify potential
refactoring from these pairs of similar entities rapidly. It then
uses semantic analysis to verify these refactorings, making it
a reliable approach. The proposed approach differs from it
in that our approach leverages fully qualified names to match
intact (without any changes) entities and entities with the same
identity (including qualified name, method signatures, and data
types. UMLDIFF [30] is a structural differencing algorithm
designed to automatically detect elementary structural changes
in software components (such as packages, classes, and meth-
ods) by comparing the design models of different system
versions. Xing and Stroulia [74] proposed JDEVAN [75],
which detects and categorizes refactorings based on design-
level changes reported by UMLDIFF. Silva and Valente [11],
[32] proposed REFDIFF that utilizes static analysis and code
similarity to detect various refactorings. It begins by tokenizing
the source code of the project. Each code element (such as
classes, methods, and fields) is transformed into a bag of



tokens. For each token in the codebase, it computes the weight
using a variation of the TF-IDF weighting scheme [76], which
assigns higher importance to tokens that are less frequent in
the codebase, as these tokens are often more discriminative.
To match code elements between the two revisions, REFDIFF
employs a weighted Jaccard coefficient [77] to compute the
similarity between code elements, and detects refactorings
based on their similarity and defined thresholds. Note that
such approaches are limited to matching coarse-grained code
entities (e.g., classes and methods) and do not support the
detection of low-level within-method refactorings (e.g., extract
variable refactorings).

To identify refactorings, REF-FINDER proposed by Prete et
al. [78], [79] encodes code elements (e.g., classes, methods,
and fields) and their relationships using logic predicates.
These predicates describe code elements and their containment
relationships within the codebase. In addition, each refactor-
ing type is encoded as a logic rule, where the antecedent
predicates represent prerequisites or change facts, specifying
the conditions that must be met for inferring a refactoring,
and the consequent predicate represents the target refactoring
type to be detected. REF-FINDER infers refactoring instances
by converting the antecedent of each rule into a logic query
and applying this query to the database of logic facts. When
the query conditions are satisfied, the approach identifies a
refactoring instance based on the rule’s consequent predicate.
Note that REF-FINDER supports the detection of several low-
level refactorings, e.g., inline variable refactorings. REFAC-
TORINGMINER proposed by Tsantalis et al. [33], [34] is
the only approach that supports both high-level and low-
level refactorings and operates at commit level. At the heart
of REFACTORINGMINER is a statement matching algorithm
without relying on any similarity thresholds, which is used
to identify and match code changes involved in refactorings.
Based on the matched entities, REFACTORINGMINER presents
a set of refactoring detection rules to map code changes
and high-level refactorings. In addition, it depends on AST
node replacements in statement mappings to infer low-level
refactorings within methods. The proposed approach differs
from the existing approaches introduced in the preceding
paragraphs in that our approach takes full advantage of the
less-exploited references of code entities and the contexts of
the to-be-matched statements.

B. Entity Matching

Entity matching originated from “origin analysis” pioneered
by Godfrey et al. [80]-[82]. Existing entity matching al-
gorithms could be categorized into two main groups. The
first category focuses on mapping one design model into
another, taking advantage of two design models as input
without delving into the detailed implementation of code
entities, such as method bodies. A prominent example of this
category is UMLDIFF, proposed by Xing and Stroulia [30].
Although it takes the source code as input, it actually works
on the class diagrams automatically generated from the source
code. Consequently, it accomplishes the mapping of code
entities by correlating one graph with another, where a graph
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represents a class diagram. In this context, nodes within the
graph represent code entities, and edges depict the relations
between these entities. The matching process is based on their
labels’ similarity (i.e., name-based similarity) and similarity
in connections (i.e., edges). Another algorithm within this
category is SIDIFF, proposed by Kelter et al. [83]. It initially
matches leaf entities, like methods, based on their types,
names, and signatures (e.g., parameters of methods), and then
adopts a bottom-up tactic to match high-level entities, like
classes, by evaluating their similarity in names, matched sub-
entities, shared generalization targets, and common packages.
Once a high-level entity is matched, it employs a top-down
tactic to match its sub-entities. Kim et al. [84] presented an
approach to automatically infer changes at or above method
headers by defining a set of low-level transformations (e.g.,
altering return types of methods) on method headers. Two
methods are considered to be matched if a sequence of rules
can transform one method’s header into that of the other.
The second category fully exploits the source code involved
in the matching process, yet none of these matching algorithms
exploit the references of code entities, as our approach does.
JDIFF, proposed by Apiwattanapong et al. [85], [86], falls
under this category. It begins by matching classes and inter-
faces based on their fully qualified names and then matches
methods within these pairs of classes/interfaces according to
method signatures. To identify the difference between matched
methods, it represents the method bodies as enhanced control
flow graphs and matches nodes in these graphs through
graph isomorphism. CHANGEDISTILLER, proposed by Fluri
et al. [40], is widely utilized for fine-grained extraction of
source code changes. Given two Abstract Syntax Trees (ASTs)
representing the source code before and after the revision,
CHANGEDISTILLER identifies a sequence of changes that can
transform one tree into the other. The core of the algorithm
lies in the similarity-based matching between two AST nodes,
where the similarity between nodes indicates the percent-
ages of common descendant nodes. GUMTREE, proposed by
Falleri et al. [41], improves upon CHANGEDISTILLER by
eliminating the assumption that leaf nodes contain signifi-
cant text. It employs a greedy top-down search algorithm to
discover the greatest isomorphic subtrees between two ASTSs
and employs a bottom-up algorithm to match code entities
based on common (matched) subtrees. REFDIFF, proposed by
Silva et al. [11], [32], leverages a variation of the TF-IDF
weighting scheme [76] and a weighted Jaccard coefficient [77]
to compute the similarity between code entities (considering
them as plain text), and match entities based on predefined
similarity thresholds. IASTMAPPER [87], proposed by Zhang
et al., is an iterative similarity-based AST mapping algorithm
to locate the code changes. Notably, although they also exploit
the contexts of statements to facilitate statement matching,
the contexts of the to-be-matched statements contain only
the nearest above and the nearest below sibling statements.
In contrast, our approach exploits all other statements in the
innermost enclosing block of the to-be-matched statements
as contexts. REFACTORINGMINER, proposed by Tsantalis et
al. [33], [34], matches code entities without applying any
similarity thresholds, greatly simplifying the usage of the



algorithm. It employs a top-down tactic, starting from classes
and proceeding to methods and fields, to match code entities
with identical signatures. For the remaining code entities
that involve signature changes or refactorings, it adopts a
bottom-up tactic, starting from methods and proceeding to
classes, to match them. At its core, it employs a novel
statement matching algorithm to match two statements by
measuring the AST node-based edit distance [43] between
them. Alikhanifard and Tsantalis improved the accuracy of
statement mappings in REFACTORINGMINER 3.0 [88]. For
leaf statements (statements without a body), their approach
employs three successive rounds of candidate sorting based
on string edit distance, node depth difference, and positional
index difference in their parent’s children list. For composite
statements (those with nested statements), the same criteria are
applied with an additional metric: the ratio of matched chil-
dren. To further refine the matching process, they developed
a novel sorting function that selects the best candidate when
multiple potential matches satisfy these criteria. The proposed
context-aware algorithm differs from the existing statement
matching algorithms, like IASTMAPPER [87] and REFAC-
TORINGMINER [33], [34], [88], in that it takes full advantage
of the other statements within the innermost enclosing block
as context-based similarity to facilitate statement mappings.

VI. CONCLUSION

In this paper, we presented a novel refactoring detection
approach (called REEXTRACTOR+) that supports the detection
of both high-level and low-level refactorings. It leverages a
reference-based entity matching algorithm to match coarse-
grained code entities between two successive versions. The
entity matching algorithm takes full advantage of qualified
names, implementations, and references. REEXTRACTOR+
also leverages a context-aware statement matching algorithm
to match statements between the pairs of matched meth-
ods/initializers. The statement matching algorithm exploits
the contexts of statements to facilitate statement matching.
Our evaluation results on real-world software applications
suggested that REEXTRACTOR+ improves the state of the
art in refactoring detection: It reduces the number of false
positives by 57.4% and improves recall by 18.4%.

The implementation of the proposed approach is currently
confined to Java. In the future, we would like to extend
it to other programming languages, which may significantly
improve the usefulness of the proposed approach. We also
plan to implement more refactoring detection heuristics so
that we can identify additional types of refactorings with
REEXTRACTOR+.
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